Electronics and Electrical Engineering and Control

Modular peer-to-peer control of dual-winding permanent magnet synchronous motor

  • ZENG Guohong ,
  • DONG Yukun ,
  • WU Xuezhi ,
  • LUO Xiao ,
  • ZHAO Minru
Expand
  • 1. National Active Distribution Network Technology Research Center, Beijing Jiaotong University, Beijing 100044, China;
    2. Beijing Aerospace Wanyuan Science & Technology Co. Ltd., Beijing 100176, China;
    3. Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100044, China

Received date: 2021-03-15

  Revised date: 2021-11-26

  Online published: 2021-11-10

Abstract

Unmanned Aerial Vehicles (UAVs) have high safety and reliability requirements for the driving of the motor. The use of the dual-winding Permanent Magnet Synchronous Motor (PMSM) with redundant fault-tolerant structures is an effective method. However, when the drive fails, the reliable control of the motor is affected. Therefore, a modular peer-to-peer control strategy based on the three-phase winding unit is proposed. Each unit motor is equipped with an independent controller to form a dual redundant structure of the controller and the motor winding. The speed droop control method is adopted to realize the cooperation of two control modules, and the slope can be adjusted to achieve the output power sharing of the unit motor. To improve the accuracy of speed control and power sharing the secondary adjustment control scheme is adopted. A mathematical model of the system under droop and secondary regulation control is established to analyze the stability of the system. Simulation and experiments are conducted to verify the effectiveness of the proposed method, which can achieve cooperative operation of two unit motors, and complete speed regulation and power sharing.

Cite this article

ZENG Guohong , DONG Yukun , WU Xuezhi , LUO Xiao , ZHAO Minru . Modular peer-to-peer control of dual-winding permanent magnet synchronous motor[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(8) : 325488 -325488 . DOI: 10.7527/S1000-6893.2021.25488

References

[1] LEVI E. Multiphase electric machines for variable-speed applications[J]. IEEE Transactions on Industrial Electronics, 2008, 55(5): 1893-1909.
[2] KARTTUNEN J, KALLIO S, PELTONIEMI P, et al. Dual three-phase permanent magnet synchronous machine supplied by two independent voltage source inverters[C]//International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion. Piscataway: IEEE Press, 2012: 741-747.
[3] 魏东鑫. 模块化永磁同步轮毂电机开路故障的容错控制策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 11-13. WEI D X. Research on open-circuit fault tolerant control strategies of modular permanent magnet synchronous hub motor[D]. Harbin: Harbin Institute of Technology, 2018: 11-13 (in Chinese).
[4] GALASSINI A, COSTABEBER A, GERADA C, et al. A modular speed-drooped system for high reliability integrated modular motor drives[J]. IEEE Transactions on Industry Applications, 2016, 52(4): 3124-3132.
[5] LEVI E, BODO N, DORDEVIC O, et al. Recent advances in power electronic converter control for multiphase drive systems[C]//2013 IEEE Workshop on Electrical Machines Design, Control and Diagnosis. Piscataway: IEEE Press, 2013: 158-167.
[6] 赵剑飞, 花敏琪, 刘廷章. 电动车用多盘式永磁同步电机协同优化与容错控制方法[J]. 中国电机工程学报, 2019, 39(2): 386-394, 636. ZHAO J F, HUA M Q, LIU T Z. Cooperative optimization and fault-tolerant control method of multi-disk permanent magnet synchronous motor for electric vehicles[J]. Proceedings of the CSEE, 2019, 39(2): 386-394, 636 (in Chinese).
[7] HE Y H, WANG Y, WU J L, et al. A simple current sharing scheme for dual three-phase permanent-magnet synchronous motor drives[C]//2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition. Piscataway: IEEE Press, 2010: 1093-1096.
[8] HU Y S, ZHU Z Q, ODAVIC M. Comparison of two-individual current control and vector space decomposition control for dual three-phase PMSM[J]. IEEE Transactions on Industry Applications, 2017, 53(5): 4483-4492.
[9] 王海兵. 双三相永磁同步电机高性能调速系统及容错运行研究[D]. 杭州: 浙江大学, 2017. WANG H B. Research on high performance speed control and fault tolerant operation of the dual three-phase PMSM[D]. Hangzhou: Zhejiang University, 2017 (in Chinese).
[10] 唐任远. 现代永磁电机理论与设计[M]. 北京: 机械工业出版社, 2015. TANG R Y. Theory and design of modern permanent magnet motor[M]. Beijing: Machinery Industry Press, 2015 (in Chinese).
[11] 张凯涛, 张辉, 支娜, 等. 光储直流微电网自适应下垂控制策略研究[J]. 电力电子技术, 2018, 52(9): 87-88, 124. ZHANG K T, ZHANG H, ZHI N, et al. Adaptive droop control strategy for photovoltaic and energy storage direct current microgrid[J]. Power Electronics, 2018, 52(9): 87-88, 124 (in Chinese).
[12] 刘英培, 杨小龙, 梁海平, 等. 适用于混合多端直流输电系统的非线性下垂控制策略[J]. 电力系统自动化, 2018, 42(22): 178-186. LIU Y P, YANG X L, LIANG H P, et al. Nonlinear droop control strategy for hybrid multi-terminal HVDC transmission system[J]. Automation of Electric Power Systems, 2018, 42(22): 178-186 (in Chinese).
[13] ABOELHASSAN M O E, RAMINOSOA T, GOODMAN A, et al. Performance evaluation of a vector-control fault-tolerant flux-switching motor drive[J]. IEEE Transactions on Industrial Electronics, 2013, 60(8): 2997-3006.
[14] 林新春, 段善旭, 康勇, 等. 基于下垂特性控制的无互联线并联UPS建模与稳定性分析[J]. 中国电机工程学报, 2004, 24(2): 33-38. LIN X C, DUAN S X, KANG Y, et al. Modeling and stability analysis for parallel operation of ups with no control interconnection basing on droop characteristic[J]. Proceedings of the CSEE, 2004, 24(2): 33-38 (in Chinese).
[15] 朱文杰, 荣飞. 局部阴影条件下基于支路串联电压源的光伏阵列结构设计[J]. 中国电机工程学报, 2013, 33(36): 96-103, 14. ZHU W J, RONG F. Structural design of photovoltaic arrays based on series-voltage source under partial shading[J]. Proceedings of the CSEE, 2013, 33(36): 96-103, 14 (in Chinese).
[16] 王丰, 孔鹏举, Fred C.Lee, 等. 基于分布式最大功率跟踪的光伏系统输出特性分析[J]. 电工技术学报, 2015, 30(24): 127-134. WANG F, KONG P J, LEE F, et al. Output characteristic analysis of distributed maximum power point tracking PV system[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 127-134 (in Chinese).
[17] LEE B, KWON S, PARK P, et al. Active power management system for an unmanned aerial vehicle powered by solar cells, a fuel cell, and batteries[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 3167-3177.
[18] 王成元, 夏加宽, 孙宜标. 现代电机控制技术[M]. 2版. 北京: 机械工业出版社, 2014. WANG C Y, XIA J K, SUN Y B. Modern control technology for electric machines[M]. 2nd ed. Beijing: China Machine Press, 2014 (in Chinese).
[19] 姚骏, 杜红彪, 周特, 等. 微网逆变器并联运行的改进下垂控制策略[J]. 电网技术, 2015, 39(4): 932-938. YAO J, DU H B, ZHOU T, et al. Improved droop control strategy for inverters parallel operation in micro-grid[J]. Power System Technology, 2015, 39(4): 932-938 (in Chinese).
[20] 郭倩, 林燎源, 武宏彦, 等. 一种改进的分布式电源无功功率精确分配下垂控制策略[J]. 电力系统自动化, 2015, 39(15): 30-34, 74. GUO Q, LIN L Y, WU H Y, et al. An improved droop control strategy for accurate reactive power sharing among distributed generators[J]. Automation of Electric Power Systems, 2015, 39(15): 30-34, 74 (in Chinese).
[21] ANAND S, FERNANDES B G, GUERRERO J. Distributed control to ensure proportional load sharing and improve voltage regulation in low-voltage DC microgrids[J]. IEEE Transactions on Power Electronics, 2013, 28(4): 1900-1913.
Outlines

/