Articles

Transonic lateral departure motion characteristics of a low-aspect-ratio flying-wing model

  • ZHANG Jie ,
  • LI Wangbin ,
  • WANG Zhengqu ,
  • PAN Jinzhu ,
  • BU Chen
Expand
  • 1. AVIC Aerodynamic Research Institute, Shenyang 110034, China;
    2. Aeronautical Science and Technology Key Lab for High Speed and High Reynolds numbers Aerodynamic Force Research, Shenyang 110034

Received date: 2021-09-09

  Revised date: 2021-10-06

  Online published: 2021-10-21

Supported by

Provincial or Ministry Level Project

Abstract

Adapted for high-speed, stealth and maneuvering flight, the low-aspect-ratio flying-wing aircraft adopts the large sweep delta wing profile to meet the uncommanded lateral motion caused by the asymmetric leading vortex breaking similar to delta wing. In order to research the motions and related control methods, aerodynamic/flow integration measurement test, free-to-roll test and numerical simulation are carried on a low-aspect-ratio flying-wing model with leading edge sweep 65° and aspect ratio 1.54, which successfully captured the commanded lateral motions including wing drop and wing rock at Mach number 0.8 and 0.9, angle of attack 15°-20° conditions in wind tunnel. The Figure of Merit in free-to-roll test show that the lateral flight quality has declined obviously. The frequency spectrum and phase plane portrait of free-to-roll trajectories confirm that the departure motion characteristics are chaos or multi-periodic broadband oscillation. The combined control surfaces including leading edge flap 10° and all aileron 10° are used to free-to-roll wind tunnel test. The results verify that the combined control surfaces can restrain the uncommanded lateral motion at Mach number 0.8, angle of attack 20° condition. The flow principle is also given by numerical simulation. The shock-wave/vortex interactions above the wings at transonic cause the flow breaking asymmetric. There are high and low frequencies in the roll moment, which finally bring out the self-excited oscillations of the low-aspect-ratio flying-wing mode.

Cite this article

ZHANG Jie , LI Wangbin , WANG Zhengqu , PAN Jinzhu , BU Chen . Transonic lateral departure motion characteristics of a low-aspect-ratio flying-wing model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(11) : 526340 -526340 . DOI: 10.7527/S1000-6893.2021.26340

References

[1] KROO I. Aerodynamic concepts for future aircraft:AIAA-1999-3524[R]. Reston:AIAA, 1999.
[2] ROMAN D, ALLEN J, LIEBECK R. Aerodynamic design challenges of the blended-wing-body subsonic transport:AIAA-2000-4335[R]. Reston:AIAA, 2000.
[3] LINEHAN T I, MOHSENI K. Aerodynamics and lateral stability of low-aspect-ratio wings with dihedral at low Reynolds numbers:AIAA-2016-1063[R]. Reston:AIAA, 2016.
[4] GRESHAM N, WANG Z J, GURSUL I. Aerodynamics of free-to-roll low aspect ratio wings:AIAA-2009-0543[R]. Reston:AIAA, 2009.
[5] MCPARLIN S, BRUCE R, HEPWORTH A, et al. Low speed wind tunnel tests on the 1303 UCAV concept:AIAA-2006-2985[R]. Reston:AIAA, 2006.
[6] CUMMINGS R, PETTERSON K, JIRASEK A, et al. SACCON static and dynamic motion flow physics simulation using cobalt:AIAA-2010-4691[R]. Reston:AIAA, 2010.
[7] SCHUETTE A, HUMMEL D, HITZEL S M. Numerical and experimental analyses of the vortical flow around the SACCON configuration:AIAA-2010-4690[R]. Reston:AIAA, 2010.
[8] BOELENS O J, LUCKRING J M, BREITSAMTER C, et al. Numerical and theoretical considerations for the design of the AVT-183 diamond-wing experimental investigations:AIAA-2015-0062[R]. Reston:AIAA, 2015.
[9] ERICSSON L, BEYERS M. High-alpha aerodynamics of a slender tailless aircraft:AIAA-2002-0094[R]. Reston:AIAA, 2002.
[10] GILLIOT A, MORGAND S, MONNIER J C, et al. Static and dynamic SACCON PIV tests, part I:Forward flowfield:AIAA-2010-4395[R]. Reston:AIAA, 2010.
[11] VICROY D D, LOESER T D, SCHVTTE A. SACCON forced oscillation tests at DNW-NWB and NASA Langley 14×22-foot tunnel:AIAA-2010-4394[R]. Reston:AIAA, 2010.
[12] 李林, 马超, 王立新. 小展弦比飞翼布局飞机稳定特性[J]. 航空学报, 2007, 28(6):1312-1317. LI L, MA C, WANG L X. Stability features of low aspect-ratio flying wings[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6):1312-1317(in Chinese).
[13] 马松辉, 吴成富, 陈怀民. 飞翼飞机稳定性与操纵性研究[J]. 飞行力学, 2006, 24(3):17-21. MA S H, WU C F, CHEN H M. Study on stability and manoeuvrability of flying wing aircraft[J]. Flight Dynamics, 2006, 24(3):17-21(in Chinese).
[14] HUANG X, HANFF E. Free-to-roll trajectory and related attractors of a 65° delta wing rolling at high incidence:AIAA-1999-4103[R]. Reston:AIAA, 1999.
[15] KONRATH R, SCHRÖDER A, KOMPENHANS J. Analysis of PIV results obtained for the VFE-265° delta wing configuration at sub-and transonic speeds:AIAA-2006-3003[R]. Reston:AIAA, 2006.
[16] DONOHOE S R, BANNINK W J. Surface reflective visualizations of shock-wave/vortex interactions above a delta wing[J]. AIAA Journal, 1997, 35(10):1568-1573.
[17] HUANG X Z. Comprehensive experimental studies on vortex dynamics over military wing configurations in IAR:AIAA-2003-3940[R]. Reston:AIAA, 2003.
[18] MITCHELL A, MORTON S, FORSYTHE J. Analysis of delta wing vortical substructures using detached-eddy simulation[J]. AIAA Journal, 1997, 44(5):13.
[19] BARBERIS D, MOLTON P, RENAC F, et al. Vortex control on delta wings:AIAA-2004-2620[R]. Reston:AIAA, 2004.
[20] 苏继川, 黄勇, 钟世东, 等. 小展弦比飞翼跨声速典型流动特性研究[J]. 空气动力学学报, 2015, 33(3):307-312, 318. SU J C, HUANG Y, ZHONG S D, et al. Research on flow characteristics of low-aspect-ratio flying-wing at transonic speed[J]. Acta Aerodynamica Sinica, 2015, 33(3):307-312, 318(in Chinese).
[21] 孔轶男, 黄建栋, 王立新, 等. 涡流控制在小展弦比飞翼布局飞机上的应用研究[J]. 空气动力学学报, 2008, 26(4):435-439. KONG Y N, HUANG J D, WANG L X, et al. Vortex control in low aspect ratio flying wing[J]. Acta Aerodynamica Sinica, 2008, 26(4):435-439(in Chinese).
[22] 单继祥, 黄勇, 苏继川, 等. 小展弦比飞翼布局新型嵌入面航向控制特性研究[J]. 空气动力学学报, 2015, 33(3):296-301. SHAN J X, HUANG Y, SU J C, et al. Effect of the novel embedded control surfaces on direction control characteristic of low-aspect-ratio flying-wing configuration[J]. Acta Aerodynamica Sinica, 2015, 33(3):296-301(in Chinese).
[23] 张彬乾, 马怡, 褚胡冰, 等. 小展弦比飞翼布局航向控制的组合舵面研究[J]. 航空学报, 2013, 34(11):2435-2442. ZHANG B Q, MA Y, CHU H B, et al. Investigation on combined control surfaces for the yaw control of low aspect ratio flying wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11):2435-2442(in Chinese).
[24] 左林玄, 王晋军. 全动翼尖对无尾飞翼布局飞机气动特性影响的实验研究[J]. 空气动力学学报, 2010, 28(2):132-137. ZUO L X, WANG J J. Experimental study of the effect of AMT on aerodynamic performance of tailless flying wing aircraft[J]. Acta Aerodynamica Sinica, 2010, 28(2):132-137(in Chinese).
[25] 杨起, 刘伟, 杨小亮, 等. 三角翼机翼摇滚主动控制多学科耦合数值模拟[J]. 航空学报, 2021, 42(12):124685. YANG Q, LIU W, YANG X L, et al. Multidisplinary interactions numerical simulation for active control of delta wing rock[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12):124685(in Chinese).
[26] 李乾,王延奎,贾玉红.带边条翼的翼身组合体摇滚运动试验研究[J].航空学报,2022,43(6):126008. LI Q, WANG Y K, JIA Y H. Experimental study on roll oscillations over the wing-body configuration with strake wing[J]. Acta Aeronautica et Astronautica Sinica,2022, 43(6):126008(in Chinese).
[27] 解克, 沈清, 王强. 小展弦比飞翼高速大攻角下横航向气动力散布分析[J]. 兵器装备工程学报, 2020, 41(8):115-120. XIE K, SHEN Q, WANG Q. Investigation of lateral-directional aerodynamics scatter for low aspect ratio flying wing configuration at high speed and high angle of attack conditions[J]. Journal of Ordnance Equipment Engineering, 2020, 41(8):115-120(in Chinese).
[28] 张杰, 才义, 吴佳莉, 等. 跨声速自由滚转试验技术研究[J]. 空气动力学学报, 2016, 34(5):611-616. ZHANG J, CAI Y, WU J L, et al. Research on a free-to-roll transonic test capability[J]. Acta Aerodynamica Sinica, 2016, 34(5):611-616(in Chinese).
[29] LAMAR J, CAPONE F, HALL R. AWS figure of merit (FOM) developed parameters from static, transonic model tests:AIAA-2003-0745[R]. Reston:AIAA, 2003.
[30] CAPONE F, OWENS D B, HALL R. Development of a free-to-roll transonic test capability:AIAA-2003-0749[R]. Reston:AIAA, 2003.
[31] HALL R, WOODSON S. Introduction to the abrupt wing stall program:AIAA-2003-0589[R]. Reston:AIAA, 2003.
[32] 解克.小展弦比飞翼布局横向稳定性与失稳特性试验分析[D].北京:中国航天空气动力技术研究院, 2020:31-115. XIE K.Experimental analysis of lateral stability and departure characteristics of a low aspect ratio flying wing[D].Beijing:China Academy of Aerospace Aerodynamics, 2020:31-115(in Chinese).
Outlines

/