Sonic boom inversion technology based on inverse augmented Burgers equation

  • Yiran GU ,
  • Jiangtao HUANG ,
  • Shusheng CHEN ,
  • Deyuan LIU ,
  • Zhenghong GAO
Expand
  • 1.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.China Aerodynamics Research and Development Center,Mianyang 621000,China
    3.AVIC The First Aircraft Institute,Xi’an 710089,China

Received date: 2021-08-20

  Revised date: 2021-09-17

  Accepted date: 2021-10-09

  Online published: 2021-10-21

Supported by

Natural Science Foundation of Shaanxi Province(2021JQ-076);Civil Aircraft Research Project

Abstract

Sonic boom has always been one of the obstacles restricting the development of supersonic airliners. Hence, the low sonic boom design technology is particularly important in the design of supersonic airliners. The inverse augmented Burgers equation can invert the mid-field sound pressure signal to the near-field and provide optimization objectives for the low sonic boom inverse design. This study uses the operator splitting technique and the pseudoparabolic equation method to numerically solve the inverse Burgers equation and calculate the corresponding reversed equivalent-area. With the assistance of the three standard examples, we investigate the convergence of the numerical method, the accuracy of the solution, and the calculation accuracy of the inversion technique at different field heights and different rolling angles. Based on the characteristics of the inverse augmented Burgers equation, the feasibility of setting target waveforms in the mid-field for the inverse design method is discussed, and the propagation characteristics of high-frequency components in the sound pressure signal are studied. The research shows that the above method can accurately complete the inversion calculation of the sound pressure signal from the mid-field to near-field, and that using mid-field target waveforms instead of ground target waveforms can reduce the influence of the inversion distance on the inversion calculation process.

Cite this article

Yiran GU , Jiangtao HUANG , Shusheng CHEN , Deyuan LIU , Zhenghong GAO . Sonic boom inversion technology based on inverse augmented Burgers equation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(2) : 626258 -626258) . DOI: 10.7527/S1000-6893.2021.26258

References

1 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报201536(8): 2507-2528.
  ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica201536(8): 2507-2528 (in Chinese).
2 WOLZ R. A summary of recent supersonic vehicle studies at gulfstream aerospace[C]∥41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
3 袁新立, 王元元. 速度与环保的平衡: NASA超声速低声爆验证机项目进展与分析[J]. 环球飞行2016(6): 48-53.
  YUAN X L, WANG Y Y. Balance with speed and environmental protection-progress and analysis of-NASA supersonic and low sonic boom demonstrator project[J]. World Flight2016(6): 48-53 (in Chinese).
4 PLOTKIN K J. State of the art of sonic boom modeling[J]. The Journal of the Acoustical Society of America2002111(1 Pt 2): 530-536.
5 PAWLOWSKI J, GRAHAM D, BOCCADORO C, et al. Origins and overview of the shaped sonic boom demonstration program[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
6 SONG W B, KEANE A J. Surrogate-based aerodynamic shape optimization of a civil aircraft engine nacelle[J]. AIAA Journal200745(10): 2565-2574.
7 KOZIEL S, LEIFSSON L. Surrogate-based aerodynamic shape optimization by variable-resolution models[J]. AIAA Journal201251(1): 94-106.
8 ONG Y S, NAIR P B, KEANE A J. Evolutionary optimization of computationally expensive problems via surrogate modeling[J]. AIAA Journal200341(4): 687-696.
9 YAMAMOTO K, INOUE O. Applications of genetic algorithm to aerodynamic shape optimization[C]∥12th Computational Fluid Dynamics Conference, 1995: 1650.
10 MATSUSHIMA K, TAKANASHI S, IWAMIYA T. Inverse design method for transonic multiple wing systems using integral equations[J]. Journal of Aircraft199734(3): 322-329.
11 HIROSE N, TAKANASHI S, KAWAI N. Transonic airfoil design procedure utilizing a Navier-Stokes analysis code[J]. AIAA Journal198725(3): 353-359.
12 OBAYASHI S, TAKANASHI S. Genetic optimization of target pressure distributions for inverse design methods[J]. AIAA Journal199634(5): 881-886.
13 TAKANASHI S. Iterative three-dimensional transonic wing design using integral equations[J]. Journal of Aircraft198522(8): 655-660.
14 RALLABHANDI S. Sonic boom adjoint methodology and its applications[C]∥29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011.
15 RALLABHANDI S K, NIELSEN E J, DISKIN B. Sonic-boom mitigation through aircraft design and adjoint methodology[J]. Journal of Aircraft201451(2): 502-510.
16 AFTOSMIS M, NEMEC M, CLIFF S. Adjoint-based low-boom design with Cart3D (Invited)[C]∥29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011.
17 NADARAJAH S, JAMESON A, ALONSO J. Sonic boom reduction using an adjoint method for wing-body configurations in supersonic flow[C]∥9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 2002.
18 THOMAS C L. Extrapolation of sonic boom pressure signatures by the waveform parameter method: NASA TND-6832[R]. Washington, D.C. : NASA, 1972.
19 ANDERSON M D. The propagation of spherical N wave in an absorbing medium and its diffraction by a circular aperture[D]. Austin: University of Texas at Austin,1974.
20 RALLABHANDI S K. Advanced sonic boom prediction using the augmented Burgers equation[J]. Journal of Aircraft201148(4): 1245-1253.
21 CLEVELAND R O. Propagation of sonic booms though a real, stratified atmosphere[D]. Austin: The University of Texas at Austin, 1995.
22 张绎典, 黄江涛, 高正红. 基于增广Burgers方程的音爆远场计算及应用[J]. 航空学报201839(7): 122039.
  ZHANG Y D, HUANG J T, GAO Z H. Far field simulation and applications of sonic boom based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica201839(7): 122039 (in Chinese).
23 SEEBASS R, GEORGE A R. Sonic‐boom minimization[J]. Journal of the Acoustical Society of America197251(49): 72.
24 LI W, RALLABHANDI S. Inverse design of low-boom supersonic concepts using reversed equivalent-area targets[J]. Journal of Aircraft201451(1): 29-36.
25 RALLABHANDI S K. Application of adjoint methodology to supersonic aircraft design using reversed equivalent areas[J]. Journal of Aircraft201451(6): 1873-1882.
26 ZHANG Y D, HUANG J T, GAO Z H, et al. Inverse design of low boom configurations using proper orthogonal decomposition and augmented Burgers equation[J]. Chinese Journal of Aeronautics201932(6): 1380-1389.
27 PIERCE A D. Acoustics: An introduction to its physical principles and applications[M]. New York: McGraw-Hill Book Co., 1981: 56-57.
28 CLEVELAND R O. Propagation of sonic booms through a real, stratified atmosphere[D]. Austin: University of Texas at Austin, 1995.
29 PLOTKIN K. Review of sonic boom theory[C]∥12th Aeroacoustic Conference. Reston: AIAA, 1989.
30 RALLABHANDI S K, LOUBEAU A. Summary of propagation cases of the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft201856(3): 876-895.
31 杨训仁, 陈宇. 大气声学[M]. 2版. 北京: 科学出版社, 2007.
  YANG X R, CHEN Y. Atmospheric acoustics[M]. 2nd ed. Beijing: Science Press, 2007 (in Chinese).
32 PARK M A, CARTER M B. Nearfield summary and analysis of the third AIAA sonic boom prediction workshop C608 low boom demonstrator[C]∥AIAA Scitech 2021 Forum. Reston: AIAA, 2021.
33 PLOTKIN K, SIZOV N, MORGENSTERN J. Examination of sonic boom minimization experienced indoors[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
34 PLOTKIN K. Review of sonic boom theory[C]∥12th Aeroacoustic Conference. Reston: AIAA, 1989.
Outlines

/