Temporal evolution of wavepackets on the windward side of an inclined hypersonic cone under a flight condition

  • YANG Peng ,
  • TANG Zhigong ,
  • CHEN Jianqiang ,
  • YUAN Xianxu ,
  • CHEN Xi ,
  • DONG Siwei
Expand
  • 1. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2021-09-01

  Revised date: 2021-09-14

  Online published: 2021-10-18

Supported by

National Natural Science Foundation of China (92052301,12002354); National Numerical Windtunnel Project

Abstract

Under flight conditions, the instability of the Mack mode will be significantly enhanced since the ratio of the wall temperature to the freestream temperature is usually low. Therefore, the boundary layer over the windward side dominated by the Mack mode may transit to turbulence earlier than the lateral side. In this paper, a high-resolution direct numerical simulation is used to study the evolution of the Mack mode on the windward side of a hypersonic inclined cone under a flight condition. The Mack mode is excited by a short-time localized wall-normal blowing-suction around the windward centerline. The spatial distribution of wavepackets and the axial evolution of the amplitudes of representative modes show that for an inclined cone, the evolution of the Mack mode is similar to that in the boundary layer over a zero-angle-of-attack cone, i.e., fundamental resonance is the most likely transition routine of the Mack mode.

Cite this article

YANG Peng , TANG Zhigong , CHEN Jianqiang , YUAN Xianxu , CHEN Xi , DONG Siwei . Temporal evolution of wavepackets on the windward side of an inclined hypersonic cone under a flight condition[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(S1) : 726367 -726367 . DOI: 10.7527/S1000-6893.2021.26367

References

[1] 陈坚强, 袁先旭, 涂国华, 等. 高超声速边界层转捩的几点认识[J]. 中国科学: 物理学 力学 天文学, 2019, 49(11): 125-138. CHEN J Q, YUAN X X, TU G H, et al. Recent progresses on hypersonic boundary-layer transition[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(11): 125-138 (in Chinese).
[2] ZHONG X L, WANG X W. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers[J]. Annual Review of Fluid Mechanics, 2012, 44(1): 527-561.
[3] 李强, 万兵兵, 杨凯, 等. 高超声速尖锥边界层压力脉动和热流脉动特性试验研究[J]. 航空学报, 2021, 42(8): 124956. LI Q, WAN B B, YANG K, et al. Experimental research on the characteristics of pressure and heat flux fluctuation in hypersonic cone boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 124956(in Chinese).
[4] XU G L, CHEN J Q, LIU G, et al. The secondary instabilities of stationary cross-flow vortices in a Mach 6 swept wing flow[J]. Journal of Fluid Mechanics, 2019, 873: 914-941.
[5] CHEN X, CHEN J Q, DONG S W, et al. Stability analyses of leeward streamwise vortices for a hypersonic yawed cone at 6 degree angle of attack[J]. Acta Aerodynamica Sinica, 2020, 38(2): 299-307.
[6] LI X H, CHEN J Q, HUANG Z F, et al. Stability analysis and transition prediction of streamwise vortices over a yawed cone at Mach 6[J]. Physics of Fluids, 2020, 32(12): 124110.
[7] CHEN J Q, DONG S W, CHEN X, et al. Stationary cross-flow breakdown in a high-speed swept-wing boundary layer[J]. Physics of Fluids, 2021, 33(2): 024108.
[8] DONG S W, CHEN J Q, YUAN X X, et al. Wall pressure beneath a transitional hypersonic boundary layer over an inclined straight circular cone[J]. Advances in Aerodynamics, 2020, 2: 29.
[9] 向星皓, 张毅锋, 袁先旭, 等. C-γ-Reθ高超声速三维边界层转捩预测模型[J]. 航空学报, 2021, 42(9): 125711. XIANG X H, ZHANG Y F, YUAN X X, et al. C-γ-Reθ model for hypersonic three-dimensional boundary layer transition prediction[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 125711 (in Chinese).
[10] HADER C, FASEL H F. Towards simulating natural transition in hypersonic boundary layers via random inflow disturbances[J]. Journal of Fluid Mechanics, 2018, 847: R3.
[11] HADER C, FASEL H F. Three-dimensional wave packet in a Mach 6 boundary layer on a flared cone[J]. Journal of Fluid Mechanics, 2020, 885: R3.
[12] LAIBLE A, FASEL H. Numerical investigation of hypersonic transition for a flared and a straight cone at Mach 6[C]//41st AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2011.
[13] SIVASUBRAMANIAN J, FASEL H. Numerical investigation of laminar-turbulent transition in a cone boundary layer at Mach 6[C]//41 st AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2011.
[14] SIVASUBRAMANIAN J, FASEL H. Direct numerical simulation of controlled transition in a boundary layer on a sharp cone at Mach 6[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013.
[15] SIVASUBRAMANIAN J, FASEL H F. Numerical investigation of the development of three-dimensional wavepackets in a sharp cone boundary layer at Mach 6[J]. Journal of Fluid Mechanics, 2014, 756: 600-649.
[16] SIVASUBRAMANIAN J, FASEL H F. Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6: Fundamental breakdown[J]. Journal of Fluid Mechanics, 2015, 768: 175-218.
[17] WAN B B, TU G H, YUAN X X, et al. Identification of traveling crossflow waves under real hypersonic flight conditions[J]. Physics of Fluids, 2021, 33(4): 044110.
[18] LI X L, FU D X, MA Y W. Direct numerical simulation of hypersonic boundary layer transition over a blunt cone[J]. AIAA Journal, 2008, 46(11): 2899-2913.
[19] ZHENG W J, YANG Y, CHEN S Y. Evolutionary geometry of Lagrangian structures in a transitional boundary layer[J]. Physics of Fluids, 2016, 28(3): 035110.
[20] CHEN X, HUANG G L, LEE C B. Hypersonic boundary layer transition on a concave wall: Stationary Görtler vortices[J]. Journal of Fluid Mechanics, 2019, 865: 1-40.
Outlines

/