Numerical study on transverse/opposing jet interaction flowfield under high Mach number

  • WU You ,
  • XU Xu ,
  • CHEN Bing ,
  • YANG Qingchun
Expand
  • School of Astronautics, Beihang University, Beijing 102206

Received date: 2021-09-01

  Revised date: 2021-09-14

  Online published: 2021-10-18

Abstract

Transverse and opposing jets are widely used in aerodynamic and aerothermal control on hypersonic vehicles. To solve Navier-Stokes equations, this paper, based on three-temperature thermochemical nonequilibrium model, numerically simulated jet interferences on a two-dimensional cylindrical vehicle at high altitude under high Mach number by employing the finite volume method in the cell-centered scheme. The flowfield structures with only transverse/opposing jet and both the two jets and the influence of jet interaction on heat flux reduction, drag reduction and lift improvement were studied. By variable control, the effects of jet flow with different parameters (Mach number, static pressure) on flow field structure and aerodynamic force/heat of aircraft were explored. The results show that in some cases, the flowfield structure of the upstream opposing jet interaction can be influenced by the downstream transverse jet when both the two jets exist in hypersonic freestream. The opposing jet can significantly lower the drag of the hypersonic vehicle and reduce the peak wall heat flux on the head of the vehicle. The lift characteristic of hypersonic vehicle can be improved by the transverse jet flow. In the case that the transverse jet has been used for aircraft attitude control, the opposing jet can be simultaneously used under certain conditions, which can not only reduce drag and peak heat flux, but also increase lift.

Cite this article

WU You , XU Xu , CHEN Bing , YANG Qingchun . Numerical study on transverse/opposing jet interaction flowfield under high Mach number[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(S1) : 726359 -726359 . DOI: 10.7527/S1000-6893.2021.26359

References

[1] CHEN L W, WANG G L, LU X Y. Numerical investigation of a jet from a blunt body opposing a supersonic flow[J]. Journal of Fluid Mechanics, 2011, 684: 85-110.
[2] HASSELBRINK E F, MUNGAL M G. Transverse jets and jet flames. Part 1. Scaling laws for strong transverse jets[J]. Journal of Fluid Mechanics, 2001, 443: 1-25.
[3] FUJITA M. Axisymmetric oscillations of an opposing jet from a hemispherical nose[J]. AIAA Journal, 1995, 33(10): 1850-1856.
[4] AFTOSMIS M, ROGERS S. Effects of jet-interaction on pitch control of a launch abort vehicle: AIAA-2008-1281[R].Reston: AIAA, 2008.
[5] 陈芳芳. 高超声速飞行器侧向喷流数值研究[D].哈尔滨: 哈尔滨工业大学, 2012: 1-2. CHEN F F. Numerical investigations of a transverse jet interaction with supersonic free stream[D].Harbin: Harbin Institute of Technology, 2012: 1-2 (in Chinese).
[6] 耿湘人, 桂业伟, 王安龄, 等. 利用二维平面和轴对称逆向喷流减阻和降低热流的计算研究[J]. 空气动力学学报, 2006, 24(1): 85-89. GENG X R, GUI Y W, WANG A L, et al. Numerical investigation on drag and heat-transfer reduction using 2-D planar and axisymmetrical forward facing jet[J]. Acta Aerodynamica Sinica, 2006, 24(1): 85-89 (in Chinese).
[7] 戎宜生, 刘伟强. 再入飞行器鼻锥逆向喷流对流场及气动热的影响[J]. 航空学报, 2010, 31(8): 1552-1557. RONG Y S, LIU W Q. Influence of opposing jet on flow field and aerodynamic heating at nose of a reentry vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1552-1557 (in Chinese).
[8] 王泽江, 李杰, 曾学军, 等. 逆向喷流对双锥导弹外形减阻特性的影响[J]. 航空学报, 2020, 41(12): 124116. WANG Z J, LI J, ZENG X J, et al. Effect of opposing jet on drag reduction characteristics of double-cone missile shape[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124116 (in Chinese).
[9] 何开锋, 董维中, 陈坚强, 等. 超声速钝体空气和钾元素混合物喷流流场的数值研究[J]. 空气动力学学报, 2006, 24(1): 90-94, 101. HE K F, DONG W Z, CHEN J Q, et al. Numerical studies of flowfields around the supersonic blunt body with the jet of the mixture of air and kalium[J]. Acta Aerodynamica Sinica, 2006, 24(1): 90-94, 101 (in Chinese).
[10] ANDERSON J D. Hypersonic and high temperature gas dynamics[M].2nd ed. Reston: AIAA, 2006: 16-20.
[11] SRIVASTAVA B. Lateral jet control of a supersonic missile: computational and experimental comparisons[J]. Journal of Spacecraft and Rockets, 1998, 35(2): 140-146.
[12] 杨彦广, 刘君, 唐志共. 横向喷流干扰中的真实气体效应研究[J]. 空气动力学学报, 2006, 24(1): 28-33. YANG Y G, LIU J, TANG Z G. A study of real gas effects on lateral jet interaction[J]. Acta Aerodynamica Sinica, 2006, 24(1): 28-33 (in Chinese).
[13] FINLEY P J. The flow of a jet from a body opposing a supersonic free stream[J]. Journal of Fluid Mechanics, 1966, 26(2): 337-368.
[14] ROCKWELL D, NAUDASCHER E. Self-sustained oscillations of impinging free shear layers[J]. Annual Review of Fluid Mechanics, 1979, 11(1): 67-94.
[15] SHANG J S, HAYES J, WURTZLER K, et al. Jet-spike bifurcation in high-speed flows[J]. AIAA Journal, 2001, 39(6): 1159-1165.
[16] HUANG W. A survey of drag and heat reduction in supersonic flows by a counterflowing jet and its combinations[J]. Journal of Zhejiang University-SCIENCE A, 2015, 16(7): 551-561.
[17] AHMED M Y M, QIN N. Forebody shock control devices for drag and aero-heating reduction: A comprehensive survey with a practical perspective[J]. Progress in Aerospace Sciences, 2020, 112: 100585.
[18] MAHESH K. The interaction of jets with crossflow[J]. Annual Review of Fluid Mechanics, 2013, 45(1): 379-407.
[19] MENG Y S, YAN L, HUANG W, et al. Fluid-thermal coupled investigation on the combinational spike and opposing/lateral jet in hypersonic flows[J]. Acta Astronautica, 2021, 185: 264-282.
[20] MENG Y S, YAN L, HUANG W, et al. Coupled investigation on drag reduction and thermal protection mechanism of a double-cone missile by the combined spike and multi-jet[J]. Aerospace Science and Technology, 2021, 115: 106840.
[21] ZHU L, LI Y K, GONG L K, et al. Coupled investigation on drag reduction and thermal protection mechanism induced by a novel combinational spike and multi-jet strategy in hypersonic flows[J]. International Journal of Heat and Mass Transfer, 2019, 131: 944-964.
[22] CLAREY M P, GREENDYKE R B. Three-temperature thermochemical nonequilibrium model with application to slender-body wakes[J]. Journal of Thermophysics and Heat Transfer, 2019, 33(3): 721-737.
[23] 李海燕. 高超声速高温气体流场的数值模拟[D].绵阳: 中国空气动力研究与发展中心, 2007: 20-22. LI H Y. Numerical simulation of hypersonic and high temperature gas flowfields[D].Mianyang: China Aerodynamics Research and Development Center, 2007: 20-22(in Chinese).
[24] 鄢昌渝. 激光等离子体相互作用机理与大气吸气式激光推进数值计算研究[D].长沙: 国防科学技术大学, 2008: 26-27. YAN C Y. Numerical investigation on laser plasma interaction mechanism and air-breathing laser propulsion[D].Changsha: National University of Defense Technology, 2008: 26-27 (in Chinese).
[25] WANG X Y, YAN C, ZHENG W L, et al. Laminar and turbulent heating predictions for Mars entry vehicles[J]. Acta Astronautica, 2016, 128: 217-228.
[26] PARK C. A review of reaction rates in high temperature air: AIAA-1989-1740[R].Reston: AIAA, 1989.
[27] 吴忧. 基于热化学非平衡模型的高超飞行器气动力/热研究[D].北京: 北京航空航天大学, 2020: 26-34. WU Y. Investigation of aerodynamic and aerothermal effects on hypersonic vehicles based on thermo-chemical nonequilibrium models[D].Beijing: Beihang University, 2020: 26-34 (in Chinese).
[28] GNOFFO P A, GUPTA R N, SHINN J L. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium: NASA TP-2867[R].Washington, D.C.: NASA, 1989.
[29] 李鹏, 陈坚强, 丁明松, 等. NNW-HyFLOW高超声速流动模拟软件框架设计[J]. 航空学报, 2021, 42(9): 169-185. LI P, CHEN J Q, DING M S, et al. Framework design of NNW-HyFLOW hypersonic flow simulation software[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 169-185 (in Chinese).
[30] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[31] GUPTA R N, YOS J M, THOMPSON R A. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K: NASA-TM-101528[R].Washington, D.C.: NASA, 1989.
[32] PARK J S, YOON S H, KIM C. Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids[J]. Journal of Computational Physics, 2010, 229(3): 788-812.
[33] VENKATAKRISHNAN V. On the accuracy of limiters and convergence to steady state solutions: AIAA-1993-0880[R].Reston: AIAA, 1993.
[34] KIM S D, LEE B J, LEE H J, et al. Robust HLLC Riemann solver with weighted average flux scheme for strong shock[J]. Journal of Computational Physics, 2009, 228(20): 7634-7642.
[35] BLAZEK J. Boundary conditions[M]//Computational Fluid Dynamics: Principles and Applications. Amsterdam: Elsevier, 2015: 253-281.
[36] MUYLAERT J, WALPOT L, HAEUSER J, et al. Standard model testing in the European High Enthalpy Facility F4 and extrapolation to flight: AIAA-1992-3905[R].Reston: AIAA, 1992.
[37] HAO J A, WANG J Y, LEE C. Numerical study of hypersonic flows over reentry configurations with different chemical nonequilibrium models[J]. Acta Astronautica, 2016, 126: 1-10.
[38] 张智超, 高振勋, 蒋崇文, 等. 高超声速气动热数值计算壁面网格准则[J]. 北京航空航天大学学报, 2015, 41(4): 594-600. ZHANG Z C, GAO Z X, JIANG C W, et al. Grid generation criterions in hypersonic aeroheating computations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 594-600 (in Chinese).
[39] WANG Z, JIANG C W, GAO Z X, et al. Prediction for the separation length of two-dimensional sonic injection with high-speed crossflow[J]. AIAA Journal, 2017, 55(3): 832-847.
[40] 李亚超, 阎超, 张翔, 等. 超声速横向喷流侧向控制的数值模拟[J]. 北京航空航天大学学报, 2015, 41(6): 1073-1079. LI Y C, YAN C, ZHANG X, et al. Numerical simulation of lateral control in supersonic cross jet flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 1073-1079 (in Chinese).
Outlines

/