Simulation of aerothermal effects on reentry capsule geometry in LENS wind tunnel tests

  • LI Peng ,
  • CHEN Jianqiang ,
  • DING Mingsong ,
  • MEI Jie ,
  • HE Xianyao ,
  • DONG Weizhong
Expand
  • 1. State Key Laboratory of Aerodynamics, Mianyang 621000, China;
    2. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2021-09-01

  Revised date: 2021-09-23

  Online published: 2021-10-14

Supported by

National Numerical Wind tunnel project

Abstract

The development of the National Numerical Windtunnel hypersonic flow simulation software HyFLOW is of huge significance in breaking the technical barriers of similar foreign software. A comparative study with the foreign DPLR software is conducted, and the main methods of the HyFLOW solver such as the numerical method, the physical and chemical models, and the calculation model of the wall catalytic characteristics are systematically introduced. Subsequently, numerical verification of the partial catalytic wall model is executed with a typical example, and finally the numerical simulation of the hypersonic aerothermal characteristics is performed based on the standard 146-mm reentry capsule model in the LENS wind tunnel test. The results show that the HyFLOW software has high aerodynamic calculation accuracy in simulation and evaluation of hypersonic thermochemical non-equilibrium flow, equivalent to that of the similar foreign DPLR software, while the calculation accuracy of aerodynamic heating under the wall catalytic conditions is reliable, with high credibility.

Cite this article

LI Peng , CHEN Jianqiang , DING Mingsong , MEI Jie , HE Xianyao , DONG Weizhong . Simulation of aerothermal effects on reentry capsule geometry in LENS wind tunnel tests[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(S1) : 726400 -726400 . DOI: 10.7527/S1000-6893.2021.26400

References

[1] 陈坚强. 国家数值风洞工程(NNW)关键技术研究进展[J]. 中国科学: 技术科学, 2020, 51(1): 79-90. CHEN J Q. Advances in the key technologies of Chinese national numerical windtunnel project[J]. SCIENTIA SINICA Technologica, 2020, 51(1): 79-90(in Chinese).
[2] 李鹏, 陈坚强, 丁明松,等. NNW-HyFLOW高超声速流动模拟软件框架设计[J]. 航空学报, 2021, 42(9): 625718. LI P, CHEN J Q, DING M S, et al. Framework design of NNW-HyFLOW Hypersonic Flow Simulation Software[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625718 (in Chinese).
[3] 李鹏, 丁明松, 何先耀,等. 基于风雷软件的化学非平衡流数值模拟应用[C]//第十八届全国计算流体力学会议, 2019: CARS-2019-04-278. LI P, DING M S, HE X Y, et al. Chemical nonequilibrium flow simulation based on PHengLEI software[C]//18th National Computational Fluid Dynamics Conference, 2019: CARS-2019-04-278 (in Chinese).
[4] 赵钟, 张来平, 何磊, 等. 适用于任意网格的大规模并行CFD计算框架PHengLEI[J]. 计算机学报, 2019, 42(11): 2368-2383. ZHAO Z, ZHANG L P, HE L, et al. PHengLEI: A large scale parallel CFD framework for arbitrary grids[J]. Chinese Journal of Computers, 2019, 42(11): 2368-2383 (in Chinese).
[5] 赵钟, 何磊, 何先耀. 风雷(PHengLEI)通用CFD软件设计[J]. 计算机工程与科学, 2020, 42(2): 210-219. ZHAO Z, HE L, HE X Y. Design of general CFD software PHengLEI[J]. Computer Engineering & Science, 2020, 42(2): 210-219 (in Chinese).
[6] MACLEAN M, MUNDY E, WADHAMS T, et al. Analysis and ground test of aerothermal effects on spherical capsule geometries[C]//38th Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2008: 4273.
[7] HASH D, OLEJNICZAK J, WRIGHT M, et al. FIRE II calculations for hypersonic nonequilibrium aerothermodynamics code verification: DPLR, LAURA, and US3D[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007: 605.
[8] 郝佳傲. 高超声速热化学非平衡耦合效应的建模研究[D].北京:北京航空航天大学, 2018: 1-148. HAO J A. Modeling of thermochemical nonequilibrium coupling effects in hypersonic flows[D].Beijing: Beihang University, 2018: 1-148(in Chinese).
[9] 王京盈. 高速高温流动的化学非平衡及热辐射耦合效应研究[D].北京: 北京航空航天大学, 2017: 1-165. WANG J Y. numerical study on coupled effects of the chemical nonequilibrium and thermal radiation in high speed and high temperature flows[D].Beijing: Beihang University, 2017: 1-165 (in Chinese).
[10] YOON S, JAMESON A. A multigrid LU-SSOR scheme for approximate newton iteration applied to the euler equations:NASA-CR-179524[R].Washington,D.C.:NASA, 1986.
[11] GUPTA R N, YOS J M, THOMPSON R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000K NASA-TM-101528[R].Washington,D.C.: NASA, 1989.
[12] 董维中. 热化学非平衡效应对高超声速流动影响的数值计算与分析[D].北京: 北京航空航天大学, 1996: 1-206. DONG W Z. Numerical simulation and analysis of thermochemical nonequilibrium effects at hypersonic flow[D].Beijing: Beihang University, 1996: 1-206(in Chinese).
[13] SURZHIKOV S, SHANG J. Kinetic models analysis for super-orbital aerophysics[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: 1278.
[14] 丁明松. 高超声速非平衡流动的磁流体力学控制数值模拟[D].北京: 军事科学院, 2019: 1-60. DING M S. Numerical simulation of magnetohydro-dynamic control for hypersonic nonequilibrium flow[D].Beijing: Academy of Military Sciences, 2019: 1-60 (in Chinese).
[15] GOKCEN T. Effects of freestream nonequilibrium on convective heat transfer to a blunt body[C]//33rd Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1995: 156.
[16] GOKCEN T. Effects of flowfield nonequilibrium on convective heat transfer to a blunt body[C]//34th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1996: 352.
Outlines

/