Inertial particle transport in non-uniform accelerated flow

  • LI Qing ,
  • TU Guohua ,
  • YU Zhaosheng ,
  • LIN Zhaowu ,
  • LI Tingting ,
  • YUAN Xianxu
Expand
  • 1. State Key Laboratory of Aerodynamic, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    3. Institute of Fluid Engineering, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China;
    4. School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China

Received date: 2021-09-01

  Revised date: 2021-09-16

  Online published: 2021-10-12

Supported by

Key Research and Development Program of China (2019YFA0405200)

Abstract

The effect of thermal ablation of novel carbon fiber composites material on the aerodynamic force and heat is not fully understood. As the primary research, without considering the chemical reaction, gas injection and other complicate physical process, this study assumes the particle loss from the vehicle surface as a discrete particles dynamics problem. Because of the high temperature in the near wall, and that the local Mach number is vanishingly small, so the near wall fluid flow can be treated as incompressible. Thereby, Particle Resolved Direct Numerical Simulation (PR-DNS) of incompressible flow is used to study the particle dynamics in a strain flow and wall-bounded stagnation point flow. It is found that the particle transport in a wall-bounded stagnation point flow is horizontal, with minimal vertical transport, which is very different from that of parallel shear flow over a particles bed. This is due to the normal hydrodynamic force of stagnation point flow.

Cite this article

LI Qing , TU Guohua , YU Zhaosheng , LIN Zhaowu , LI Tingting , YUAN Xianxu . Inertial particle transport in non-uniform accelerated flow[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(S1) : 726390 -726390 . DOI: 10.7527/S1000-6893.2021.26390

References

[1] 国义军, 石卫波, 曾磊. 高超声速飞行器烧蚀防热理论与应用[M].北京: 科学出版社, 2019: 1-10. GUO Y J, SHI W B, ZENG L. Mechanism of ablative thermal protection applied to hypersonic vehicles[M].Beijing: Science Press, 2019: 1-10 (in Chinese).
[2] 国义军, 代光月, 桂业伟, 等. 碳基材料氧化烧蚀的双平台理论和反应控制机理[J]. 空气动力学学报, 2014, 32(6): 755-760. GUO Y J, DAI G Y, GUI Y W, et al. A dual platform theory for carbon-based material oxidation with reaction-diffusion rate controlled kinetics[J]. Acta Aerodynamica Sinica, 2014, 32(6): 755-760 (in Chinese).
[3] CHARRU F, ANDREOTTI B, CLAUDIN P. Sand ripples and dunes[J]. Annual Review of Fluid Mechanics, 2013, 45: 469-493.
[4] KIDANEMARIAM A G, UHLMANN M. Direct numerical simulation of pattern formation in subaqueous sediment[J]. Journal of Fluid Mechanics, 2014, 750: R2.
[5] 刘朋欣, 袁先旭, 孙东, 等. 高温化学非平衡湍流边界层直接数值模拟[J/OL]. 航空学报, (2020-11-13)[2020-11-16]. http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.24877 LIU P X, YUAN X X, SUN D, et al. DNS of high temperature non-equibrilium turbulent boundary layer[J/OL]. Acta Aeronautica et Astronautica Sinica, (2020-11-13)[2020-11-16]. http://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.24877 (in Chinese).
[6] LIU P X, LI Q, HUANG Z F, et al. Interpretation of wake instability at slip line in rotating detonation[J]. International Journal of Computational Fluid Dynamics, 2018, 32(8-9): 379-394.
[7] 吴望一. 流体力学[M].北京: 北京大学出版社, 1983: 440-447. WU W Y. Fluid mechanics[M].Beijing: Peking University Press, 1983: 440-447 (in Chinese).
[8] LOBB R K. Experimental measurement of shock detachment distance on spheres fired in air at hypervelocities[M]//AGARDograph. Amsterdam: Elsevier, 1964: 519-527.
[9] SINCLAIR J, CUI X. A theoretical approximation of the shock standoff distance for supersonic flows around a circular cylinder[J]. Physics of Fluids, 2017, 29(2): 026102.
[10] OLIVIER H. A theoretical model for the shock stand-off distance in frozen and equilibrium flows[J]. Journal of Fluid Mechanics, 2000, 413: 345-353.
[11] HORNUNG H G. Non-equilibrium dissociating nitrogen flow over spheres and circular cylinders[J]. Journal of Fluid Mechanics, 1972, 53(1): 149-176.
[12] WEN C Y, HORNUNG H G. Non-equilibrium dissociating flow over spheres[J]. Journal of Fluid Mechanics, 1995, 299: 389-405.
[13] VIGOLO D, GRIFFITHS I M, RADL S, et al. An experimental and theoretical investigation of particle-wall impacts in a T-junction[J]. Journal of Fluid Mechanics, 2013, 727: 236-255.
[14] LI Q, ABBAS M, MORRIS J F, et al. Near-wall dynamics of a neutrally buoyant spherical particle in an axisymmetric stagnation point flow[J]. Journal of Fluid Mechanics, 2020, 892: A32.
[15] LI Q, ABBAS M, MORRIS J F. Particle approach to a stagnation point at a wall: Viscous damping and collision dynamics[J]. Physical Review Fluids, 2020, 5(10): 104301.
[16] LI Q. Near-wall dynamics of neutrally buoyant particles in a wall-normal flow: From viscous damping to collision[D].Toulouse: INP Toulouse, 2019.
[17] WHITE F M. Viscous fluid flow[M].3rd ed. Boston: McGraw-Hill, 2006.
[18] BRADSHAW P. Compressible turbulent shear layers[J]. Annual Review of Fluid Mechanics, 1977, 9: 33-52.
[19] COLEMAN G N, KIM J, MOSER R D. A numerical study of turbulent supersonic isothermal-wall channel flow[J]. Journal of Fluid Mechanics, 1995, 305: 159-183.
[20] ZHANG C, DUAN L, CHOUDHARI M M. Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers[J]. AIAA Journal, 2018, 56(11): 4297-4311.
[21] ZHENG X J, BO T L, ZHU W. A scale-coupled method for simulation of the formation and evolution of aeolian dune field[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2009, 10(3): 387-395.
[22] SAFFMAN P G. The lift on a small sphere in a slow shear flow[J]. Journal of Fluid Mechanics, 1965, 22(2): 385-400.
[23] LEGENDRE D, MAGNAUDET J. The lift force on a spherical bubble in a viscous linear shear flow[J]. Journal of Fluid Mechanics, 1998, 368: 81-126.
[24] MAGNAUDET J. Small inertial effects on a spherical bubble, drop or particle moving near a wall in a time-dependent linear flow[J]. Journal of Fluid Mechanics, 2003, 485: 115-142.
[25] ZHOU Q, FAN L S. Direct numerical simulation of moderate-Reynolds-number flow past arrays of rotating spheres[J]. Physics of Fluids, 2015, 27(7): 073306.
[26] ZHOU Q, FAN L S. Direct numerical simulation of low-Reynolds-number flow past arrays of rotating spheres[J]. Journal of Fluid Mechanics, 2015, 765: 396-423.
[27] GLOWINSKI R, PAN T W, PERIAUX J. A fictitious domain method for Dirichlet problem and applications[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 111(3-4): 283-303.
[28] GLOWINSKI R, PAN T W, HESLA T I, et al. A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow[J]. Journal of Computational Physics, 2001, 169(2): 363-426.
[29] YU Z S, SHAO X M, WACHS A. A fictitious domain method for particulate flows[J]. Journal of Hydrodynamics, Ser B, 2006, 18(3): 482-486.
[30] XIA Y, XIONG H B, YU Z S, et al. Effects of the collision model in interface-resolved simulations of particle-laden turbulent channel flows[J]. Physics of Fluids, 2020, 32(10): 103303.
[31] AUTON T R, HUNT J C R, PRUD’HOMME M. The force exerted on a body in inviscid unsteady non-uniform rotational flow[J]. Journal of Fluid Mechanics, 1988, 197: 241-257.
[32] BASSET A B. A treatise on hydrodynamics. Vol. 2[M].[S.l.]: Dover, 1888.
[33] LOVALENTI P M, BRADY J F. The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number[J]. Journal of Fluid Mechanics, 1993, 256: 561-605.
[34] LOVALENTI P M, BRADY J F. The force on a bubble, drop, or particle in arbitrary time-dependent motion at small Reynolds number[J]. Physics of Fluids A: Fluid Dynamics, 1993, 5(9): 2104-2116.
[35] MEI R W, ADRIAN R J. Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number[J]. Journal of Fluid Mechanics, 1992, 237: 323-341.
[36] LIGHTHILL M J. The response of laminar skin friction and heat transfer to fluctuations in the stream velocity[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1954, 224(1156): 1-23.
[37] ACKERBERG R C, PHILLIPS J H. The unsteady laminar boundary layer on a semi-infinite flat plate due to small fluctuations in the magnitude of the free-stream velocity[J]. Journal of Fluid Mechanics, 1972, 51(1): 137-157.
[38] LEGENDRE D, RACHIH A, SOUILLIEZ C, et al. Basset-Boussinesq history force of a fluid sphere[J]. Physical Review Fluids, 2019, 4(7): 073603.
[39] CAFLISCH R E, LUKE J H C. Variance in the sedimentation speed of a suspension[J]. The Physics of Fluids, 1985, 28(3): 759-760.
[40] KOCH D L, SHAQFEH E S G. Screening in sedimenting suspensions[J]. Journal of Fluid Mechanics, 1991, 224: 275-303.
[41] MAGNAUDET J, RIVERO M, FABRE J. Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow[J]. Journal of Fluid Mechanics, 1995, 284: 97-135.
[42] BAGCHI P, BALACHANDAR S. Inertial and viscous forces on a rigid sphere in straining flows at moderate Reynolds numbers[J]. Journal of Fluid Mechanics, 2003, 481: 105-148.
[43] SEGRÉ G, SILBERBERG A. Behaviour of macroscopic rigid spheres in Poiseuille flow Part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams[J]. Journal of Fluid Mechanics, 1962, 14(1): 115-135.
[44] SEGRÉ G, SILBERBERG A. Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation[J]. Journal of Fluid Mechanics, 1962, 14(1): 136-157.
[45] O’NEILL M E, STEWARTSON K. On the slow motion of a sphere parallel to a nearby plane wall[J]. Journal of Fluid Mechanics, 1967, 27(4): 705-724.
[46] HO B P, LEAL L G. Inertial migration of rigid spheres in two-dimensional unidirectional flows[J]. Journal of Fluid Mechanics, 1974, 65(2): 365-400.
[47] VASSEUR P, COX R G. The lateral migration of a spherical particle in two-dimensional shear flows[J]. Journal of Fluid Mechanics, 1976, 78(2): 385-413.
[48] LEGENDRE D, MAGNAUDET J. A note on the lift force on a spherical bubble or drop in a low-Reynolds-number shear flow[J]. Physics of Fluids, 1997, 9(11): 3572-3574.
[49] LEE H, BALACHANDAR S. Drag and lift forces on a spherical particle moving on a wall in a shear flow at finite Re[J]. Journal of Fluid Mechanics, 2010, 657: 89-125.
[50] MASOUD H, STONE H A. The reciprocal theorem in fluid dynamics and transport phenomena[J]. Journal of Fluid Mechanics, 2019, 879: P1.
[51] HORWITZ J A K, MANI A. Accurate calculation of Stokes drag for point-particle tracking in two-way coupled flows[J]. Journal of Computational Physics, 2016, 318: 85-109.
[52] HORWITZ J A K. Verifiable point-particle methods for two-way coupled particle-laden flows[D].Stanford: Stanford University, 2018.
[53] YICK K Y, TORRES C R, PEACOCK T, et al. Enhanced drag of a sphere settling in a stratified fluid at small Reynolds numbers[J]. Journal of Fluid Mechanics, 2009, 632: 49-68.
[54] ZHANG J, MERCIER M J, MAGNAUDET J. Core mechanisms of drag enhancement on bodies settling in a stratified fluid[J]. Journal of Fluid Mechanics, 2019, 875: 622-656.
[55] DA ROCHA D, PAETZOLD E, KANSWOHL N. The shrinking core model applied on anaerobic digestion[J]. Chemical Engineering and Processing: Process Intensification, 2013, 70: 294-300.
[56] LUO K, MAO C L, FAN J R, et al. Fully resolved simulations of single char particle combustion using a ghost-cell immersed boundary method[J]. AIChE Journal, 2018, 64(7): 2851-2863.
Outlines

/