Atmospheric turbulence effects on sonic boom propagation based on augmented Burgers equation

  • Di WANG ,
  • Yan LENG ,
  • Long YANG ,
  • Zhonghua HAN ,
  • Zhansen QIAN
Expand
  • 1.National Key Laboratory of Science and Technology on Aerodynamic Design and Research,School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.Key Laboratory of Hypersonic Aerodynamic Force and Heat Technology,AVIC Aerodynamics Research Institute,Shenyang  110034,China
    3.Aeronautical Science and Technology Key Lab for High Speed and High Reynolds Number Aerodynamic Force Research,AVIC Aerodynamics Research Institute,Shenyang 110034,China
E-mail: qianzs@avic.com

Received date: 2021-09-03

  Revised date: 2021-09-24

  Accepted date: 2021-10-08

  Online published: 2021-10-12

Supported by

National Natural Science Foundation of China(11672280)

Abstract

Sonic boom is one of the key problems in the supersonic civil aircraft development. The current popular sonic boom prediction technology mainly functions for the static atmosphere, with little consideration of the dynamic effects such as atmospheric turbulence disturbance, resulting in a lack of efficient and high-fidelity prediction method. This paper establishes a set of rapid sonic boom prediction methods considering the physical effects of thermoviscous absorption and molecular relaxation, based on a far-field sonic boom prediction by solving the augmented Burgers equation and combining the ray tracing method. This method is then used to study the influence of atmospheric turbulence intensity and atmospheric turbulence boundary layer height on the sonic boom signatures of a typical long-range supersonic civil aircraft. The results show that the proposed prediction method can reasonably characterize the thermoviscous absorption and molecular relaxation. Compared with the previous prediction method, it can truly describe the influence of atmospheric turbulence on the propagation characteristics of sonic boom. Despite the higher complexity of the sonic boom waveform of the example used in this article than that of the previous typical supersonic business jets, this prediction method can still explain the influence of atmospheric turbulence in the complex wave system. As the turbulence intensity and the boundary layer height increase, the random influence of atmospheric turbulence on the characteristics of the sonic boom increases. Meanwhile, the location of the sonic boom arrival points also shows a more scattered trend, which may change the impact range of the sonic boom on the ground. Therefore, the turbulence intensity and turbulence boundary layer height should be considered in flight trajectory planning.

Cite this article

Di WANG , Yan LENG , Long YANG , Zhonghua HAN , Zhansen QIAN . Atmospheric turbulence effects on sonic boom propagation based on augmented Burgers equation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(2) : 626318 -626318 . DOI: 10.7527/S1000-6893.2021.26318

References

1 钱战森, 韩忠华. 声爆研究的现状与挑战[J]. 空气动力学学报201937(4): 601-619, 600.
  QIAN Z S, HAN Z H. Progress and challenges of sonic boom research[J]. Acta Aerodynamica Sinica201937(4): 601-619, 600 (in Chinese).
2 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报201536(8): 2507-2528.
  ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica201536(8): 2507-2528 (in Chinese).
3 黄江涛, 张绎典, 高正红, 等. 基于流场/声爆耦合伴随方程的超声速公务机声爆优化[J]. 航空学报201940(5): 122505.
  HUANG J T, ZHANG Y D, GAO Z H, et al. Sonic boom optimization of supersonic jet based on flow/sonic boom coupled adjoint equations[J]. Acta Aeronautica et Astronautica Sinica201940(5): 122505 (in Chinese).
4 兰世隆. 超声速民机声爆理论、预测和最小化方法概述[J]. 空气动力学学报201937(4): 646-654, 645.
  LAN S L. Overview of sonic boom theory, prediction and minimization methods for supersonic civil aircraft[J]. Acta Aerodynamica Sinica201937(4): 646-654, 645 (in Chinese).
5 张力文, 宋文萍, 韩忠华, 等. 声爆产生、传播和抑制机理研究进展[J/OL]. 航空学报, (2021-08-04)[2021-09-29]. .
  ZHANG L W, SONG W P, HAN Z H, et al. Recent progress of sonic boom generation, propagation and mitigation mechanism[J/OL]. Acta Aeronautica et Astronautica Sinica, (2021-08-04) [2021-09-29]. (in Chinese).
6 韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机气动相关关键技术与研究进展[J]. 空气动力学学报201937(4): 620-635.
  HAN Z H, QIAO J L, DING Y L, et al. Key technologies for next-generation environmentally-friendly supersonic transport aircraft: a review of recent progress[J]. Acta Aerodynamica Sinica201937(4): 620-635 (in Chinese).
7 钱战森, 冷岩, 高亮杰, 等. 超声速飞行器声爆预测技术研究现状与发展建议[J]. 气动研究与实验202032(1): 89-100.
  QIAN Z S, LENG Y, GAO L J, et al. Current status and development proposals of sonic boom prediction technique for supersonic aircraft[J]. Aerodynamic Research & Experiment202032(1): 89-100 (in Chinese).
8 刘中臣, 钱战森, 冷岩, 等. 声爆近场空间压力风洞测量技术[J]. 航空学报202041(4): 123596.
  LIU Z C, QIAN Z S, LENG Y, et al. Wind tunnel measurement techniques for sonic boom near-field pressure[J]. Acta Aeronautica et Astronautica Sinica202041(4): 123596 (in Chinese).
9 盛裴轩. 大气物理学[M]. 北京: 北京大学出版社, 2003.
  SHENG P X. Atmospheric physics[M]. Beijing: Peking University Press, 2003 (in Chinese).
10 车军辉, 赵平, 史茜, 等. 大气边界层研究进展[J]. 地球物理学报202164(3): 735-751.
  CHE J H, ZHAO P, SHI Q, et al. Research progress in atmospheric boundary layer[J]. Chinese Journal of Geophysics202164(3): 735-751 (in Chinese).
11 HILTON D A, HUCKEL V, MAGLIERI D J. Sonic-boom measurements during bomber training operations in the Chicago area: NASA TN-3655 [R]. Washington, D.C.: NASA, 1966.
12 BIRINGEN S, HOWARD J E, REICHERT R S. Simulation of sonic boom interaction with shear turbulence[J]. Mechanics Research Communications200532(5): 604-609.
13 PIERCE A D. Spikes on sonic-boom pressure waveforms[J]. The Journal of the Acoustical Society of America196844(4): 1052-1061.
14 CROW S C. Distortion of sonic Bangs by atmospheric turbulence[J]. Journal of Fluid Mechanics196937(3): 529-563.
15 WHITHAM G B. The flow pattern of a supersonic projectile[J]. Communications on Pure and Applied Mathematics19525(3): 301-348.
16 WHITHAM G B. On the propagation of weak shock waves[J]. Journal of Fluid Mechanics19561(3): 290-318.
17 CARLSON H W, MAGLIERI D J. Review of sonic boom generation theory and prediction methods[J]. The Journal of the Acoustical Society of America197149(1A): 72.
18 RANDALL D G. Sonic Bang intensities in a stratified, still atmosphere[J]. Journal of Sound and Vibration19688(2): 196-214.
19 THOMAS C L. Extrapolation of sonic boom pressure signatures by the waveform parameter method: NASA TN-D-6832 [R]. Washington, D.C.: NASA, 1972.
20 ROBINSON L D. Sonic boom propagation through an inhomogeneous windy atmosphere[D]. Austin: The University of Texas at Austin, 1991.
21 CLEVELAND R O. Propagation of sonic booms through a real, stratified atmosphere[D]. Austin: The University of Texas at Austin, 1995.
22 CROW S C. Distortion of sonic Bangs by atmospheric turbulence[J]. Journal of Fluid Mechanics196937(3): 529-563.
23 王刚, 马博平, 雷知锦, 等. 典型标模音爆的数值预测与分析[J]. 航空学报201839(1): 121458.
  WANG G, MA B P, LEI Z J, et al. Simulation and analysis for sonic boom on several benchmark cases[J]. Acta Aeronautica et Astronautica Sinica201839(1): 121458 (in Chinese).
24 冷岩, 钱战森, 刘中臣. 超声速条件下旋成体声爆典型影响因素分析[J]. 空气动力学学报201937(4): 655-662, 689.
  LENG Y, QIAN Z S, LIU Z C. Analysis on typical parameters of bodies of revolution affecting the sonic boom[J]. Acta Aerodynamica Sinica201937(4): 655-662, 689 (in Chinese).
25 张绎典, 黄江涛, 高正红. 基于增广Burgers方程的音爆远场计算及应用[J]. 航空学报201839(7): 122039.
  ZHANG Y D, HUANG J T, GAO Z H. Far field simulation and applications of sonic boom based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica201839(7): 122039 (in Chinese).
26 乔建领, 韩忠华, 丁玉临, 等. 基于广义Burgers方程的超声速客机远场声爆高精度预测方法[J]. 空气动力学学报201937(4): 663-674.
  QIAO J L, HAN Z H, DING Y L, et al. Sonic boom prediction method for supersonic transports based on augmented Burgers equation[J]. Acta Aerodynamica Sinica201937(4): 663-674 (in Chinese).
27 王迪, 钱战森, 冷岩. 广义Burgers方程声爆传播模型高阶格式离散 [J]. 航空学报202243(1): 124916.
  WANG D, QIAN Z S, LENG Y. High-order scheme discretization of the sonic boom propagation model based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica202243(1): 124916 (in Chinese).
28 ZABOLOTSKAYA E A, KHOKHLOV R V. Quasi-plane waves in the nonlinear acoustics of confined beams[J]. Soviet Physics Acoustics196915(2): 35-40.
29 KUZNETSOV V P. Equations of nonlinear acoustics[J]. Soviet Physics Acoustics197016(1): 467-470.
30 PIACSEK A A. Atmospheric turbulence conditions leading to focused and folded sonic boom wave fronts[J]. The Journal of the Acoustical Society of America2002111(1 Pt 2): 520-529.
31 LOCEY L L. Sonic boom postprocessing functions to simulate atmospheric turbulence effects[D]. State College: The Pennsylvania State University, 2008.
32 LUQUET D. 3D simulation of acoustical shock waves propagation through a turbulent atmosphere. Application to sonic boom[D]. Pairs: Sorbone Unicversity (UPMC), 2016.
33 DAGRAU F, RéNIER M, MARCHIANO R, et al. Acoustic shock wave propagation in a heterogeneous medium: A numerical simulation beyond the parabolic approximation[J]. The Journal of the Acoustical Society of America2011130(1): 20-32.
34 ROBINSON L. Sonic boom propagation through turbulence: A ray theory approach: N94-28192 [R]. Washington, D.C.: NASA, 1993.
35 YAMASHITA H, OBAYASHI S. Sonic boom variability due to homogeneous atmospheric turbulence[J]. Journal of Aircraft200946(6): 1886-1893.
36 冷岩, 钱战森, 杨龙. 均匀各向同性大气湍流对声爆传播特性的影响[J]. 航空学报202041(2): 123290.
  LENG Y, QIAN Z S, YANG L. Homogeneous isotropic atmospheric turbulence effects on sonic boom propagation[J]. Acta Aeronautica et Astronautica Sinica202041(2): 123290 (in Chinese).
37 LENG Y, QIAN Z S. Sonic boom signature analysis for a type of hypersonic long-range civil vehicle[C]∥21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017.
38 LIU Y, WANG L, QIAN Z S. Numerical investigation on the assistant restarting method of variable geometry for high Mach number inlet[J]. Aerospace Science and Technology201879: 647-657.
39 LENG Y, QIAN Z S. A CFD based sonic boom prediction method and investigation on the parameters affecting the sonic boom signature[J]. Procedia Engineering201599: 433-451.
40 LIOU M S. Mass flux schemes and connection to shock instability[J]. Journal of Computational Physics2000160(2): 623-648.
41 HINZE J O. Turbulence[M]. 2nd ed. New York: McGraw-Hill, 1975: 175-320.
42 YAMAMOTO M, HASHIMOTO A, AOYAMA T, et al. A unified approach to an augmented Burgers equation for the propagation of sonic booms[J]. The Journal of the Acoustical Society of America2015137(4): 1857-1866.
43 韩阳, 冷岩, 杨龙, 等. 一类超声速长航程民用客机的气动设计和性能评估[J]. 航空科学技术201930(9): 25-32.
  HAN Y, LENG Y, YANG L, et al. Aerodynamic design and evaluation of a type of supersonic long-range civil transport[J]. Aeronautical Science & Technology201930(9): 25-32 (in Chinese).
Outlines

/