Influencing parameters and film flow mechanism of spray droplet impacting liquid film

  • BAO Jun ,
  • WANG Yu ,
  • NIU Qian ,
  • ZHU Xidong ,
  • CHENG Jianjie
Expand
  • College of Urban Construction, Nanjing Tech University, Nanjing 210009

Received date: 2021-09-01

  Revised date: 2021-09-14

  Online published: 2021-10-09

Supported by

National Natural Science Foundation of China (51806096);General Program of China Postdoctoral Science Foundation(2019M661812);Key Laboratory of Aircraft Environmental Control and Life Support, Nanjing University of Aeronautics and Astronautics(KLAECLS-E-201902)

Abstract

The impact of droplets on the wall is the most common phenomenon in spray cooling. The Volume of Fluid (VOF) method in computational fluid dynamics software was used to carry out numerical simulation studies on the process of droplets impacting the wall surface, and the splash shape characteristics of the process of droplets impacting the wall surface liquid film with different parameters were studied. According to the height and diameter of the splash, the influence of droplet parameters and film thickness on splash parameters were analyzed. Combined with the change of splash parameters, the motion discontinuity theory and the change of the dimensionless parameter Re and We were used to analyze the effects of different parameters on the flow characteristics of the liquid film, the shape of the splash and the mechanism of the splash generation. The results showed that when large droplets hit the liquid film, the fluidity of the liquid film can be improved, while the film thickness will be increased. Excessive droplet velocity will produce much splashing and dry up the surface. Increasing the surface tension properly can reduce the formation of secondary droplets and promote the flow of liquid film. Better fluidity of the liquid film can be achieved when the droplets hit a thin liquid film. When the non-dimensional film height is between 0.6 and 1.2, the fluidity of the liquid film does not change with the thickness of the liquid film.

Cite this article

BAO Jun , WANG Yu , NIU Qian , ZHU Xidong , CHENG Jianjie . Influencing parameters and film flow mechanism of spray droplet impacting liquid film[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(S1) : 726360 -726360 . DOI: 10.7527/S1000-6893.2021.26360

References

[1] 屠敏, 袁耿民, 薛飞, 等. 综合热管理在先进战斗机系统研制中的应用[J]. 航空学报, 2020, 41(6): 523629. TU M, YUAN G M, XUE F, et al. Application of integrated thermal management in development of advanced fighter system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523629 (in Chinese).
[2] 李言青, 宣益民. 直升机热管理与红外辐射特性耦合分析方法[J]. 航空学报, 2021, 42(3): 124270. LI Y Q, XUAN Y M. Coupling analysis method for helicopter thermal management and infrared radiation characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 124270 (in Chinese).
[3] BOSTANCI H, VAN EE D, SAARLOOS B A, et al. Thermal management of power inverter modules at high fluxes via two-phase spray cooling[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, 2(9): 1480-1485.
[4] KANDLIKAR S G, BAPAT A V. Evaluation of jet impingement, spray and microchannel chip cooling options for high heat flux removal[J]. Heat Transfer Engineering, 2007, 28(11): 911-923.
[5] KIM J H, YOU S M, CHOI S U S. Evaporative spray cooling of plain and microporous coated surfaces[J]. International Journal of Heat and Mass Transfer, 2004, 47(14-16): 3307-3315.
[6] XIE J L, TAN Y B, DUAN F, et al. Study of heat transfer enhancement for structured surfaces in spray cooling[J]. Applied Thermal Engineering, 2013, 59(1-2): 464-472.
[7] ASHWOOD A C, SHEDD T A. Spray cooling with mixtures of dielectric fluids[C]//Twenty-Third Annual IEEE Semiconductor Thermal Measurement and Management Symposium. Piscataway: IEEE Press, 2007: 144-148.
[8] XU H B, SI C Q, SHAO S Q, et al. Experimental investigation on heat transfer of spray cooling with isobutane (R600a)[J]. International Journal of Thermal Sciences, 2014, 86: 21-27.
[9] RIOBOO R, BAUTHIER C, CONTI J, et al. Experimental investigation of splash and crown formation during single drop impact on wetted surfaces[J]. Experiments in Fluids, 2003, 35(6): 648-652.
[10] YARIN A L, WEISS D A. Impact of drops on solid surfaces: Self-similar capillary waves, and splashing as a new type of kinematic discontinuity[J]. Journal of Fluid Mechanics, 1995, 283: 141-173.
[11] OKAWA T, SHIRAISHI T, MORI T. Production of secondary drops during the single water drop impact onto a plane water surface[J]. Experiments in Fluids, 2006, 41(6): 965-974.
[12] ZHANG L V, BRUNET P, EGGERS J, et al. Wavelength selection in the crown splash[J]. Physics of Fluids, 2010, 22(12): 122105.
[13] COSSALI G E, MARENGO M, COGHE A, et al. The role of time in single drop splash on thin film[J]. Experiments in Fluids, 2004, 36(6): 888-900.
[14] XU L, ZHANG W W, NAGEL S R. Drop splashing on a dry smooth surface[J]. Physical Review Letters, 2005, 94(18): 184505.
[15] 梁刚涛, 沈胜强, 郭亚丽, 等. 实验观测液滴撞击倾斜表面液膜的特殊现象[J]. 物理学报, 2013, 62(8): 374-380. LIANG G T, SHEN S Q, GUO Y L, et al. Special phenomena of droplet impact on an inclined wetted surface with experimental observation[J]. Acta Physica Sinica, 2013, 62(8): 374-380 (in Chinese).
[16] VAN HINSBERG N P, BUDAKLI M, GÖHLER S, et al. Dynamics of the cavity and the surface film for impingements of single drops on liquid films of various thicknesses[J]. Journal of Colloid and Interface Science, 2010, 350(1): 336-343.
[17] NIKOLOPOULOS N, THEODORAKAKOS A, BERGELES G. Normal impingement of a droplet onto a wall film: A numerical investigation[J]. International Journal of Heat and Fluid Flow, 2005, 26(1): 119-132.
[18] LIANG G T, GUO Y L, SHEN S Q, et al. Crown behavior and bubble entrainment during a drop impact on a liquid film[J]. Theoretical and Computational Fluid Dynamics, 2014, 28(2): 159-170.
[19] GUO Y L, WEI L, LIANG G T, et al. Simulation of droplet impact on liquid film with CLSVOF[J]. International Communications in Heat and Mass Transfer, 2014, 53: 26-33.
[20] 严永华, 石自媛, 杨帆, 等. 液滴撞击液膜喷溅过程的LBM模拟[J]. 上海大学学报(自然科学版), 2008, 14(4): 399-404. YAN Y H, SHI Z Y, YANG F, et al. Simulation of drop impact on liquid film using LBM[J]. Journal of Shanghai University (Natural Science Edition), 2008, 14(4): 399-404 (in Chinese).
[21] MUKHERJEE S, ABRAHAM J. Crown behavior in drop impact on wet walls[J]. Physics of Fluids, 2007, 19(5): 052103.
[22] AGBAGLAH G, JOSSERAND C, ZALESKI S. Longitudinal instability of a liquid rim[J]. Physics of Fluids, 2013, 25(2): 022103.
[23] 柴敏, 陈松, 邵长孝, 等. 单液滴撞击液膜的颈部射流模拟及机理分析[J]. 工程热物理学报, 2016, 37(8): 1669-1675. CHAI M, CHEN S, SHAO C X, et al. DNS analysis of neck jetting flow dynamics after single drop impacting onto a preexisting liquid film[J]. Journal of Engineering Thermophysics, 2016, 37(8): 1669-1675 (in Chinese).
[24] RUDMAN M. Volume-tracking methods for interfacial flow calculations[J]. International Journal for Numerical Methods in Fluids, 1997, 24(7): 671-691.
[25] HOU Y, TAO Y J, HUAI X L, et al. Numerical characterization of multi-nozzle spray cooling[J]. Applied Thermal Engineering, 2012, 39: 163-170.
[26] SARKAR S, SELVAM R P. Direct numerical simulation of heat transfer in spray cooling through 3D multiphase flow modeling using parallel computing[J]. Journal of Heat Transfer, 2009, 131(12): 121007.
[27] BAYSINGER K, YERKES K, HARRIS R, et al. Design of a microgravity spray cooling experiment[C]//42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004.
[28] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究[J]. 物理学报, 2010, 59(4): 2601-2609. GUO J H, DAI S Q, DAI Q. Experimental research on the droplet impacting on the liquid film[J]. Acta Physica Sinica, 2010, 59(4): 2601-2609 (in Chinese).
[29] ERBIL H Y. Evaporation of pure liquid sessile and spherical suspended drops: A review[J]. Advances in Colloid and Interface Science, 2012, 170(1-2): 67-86.
[30] 梁刚涛, 郭亚丽, 沈胜强. 液滴撞击液膜的射流与水花形成机理分析[J]. 物理学报, 2013, 62(2): 415-421. LIANG G T, GUO Y L, SHEN S Q. Analysis of liquid sheet and jet flow mechanism after droplet impinging onto liquid film[J]. Acta Physica Sinica, 2013, 62(2): 415-421 (in Chinese).
[31] FUJIMOTO H, OGINO T, TAKUDA H, et al. Collision of a droplet with a hemispherical static droplet on a solid[J]. International Journal of Multiphase Flow, 2001, 27(7): 1227-1245.
[32] KIM H Y, FENG Z C, CHUN J H. Instability of a liquid jet emerging from a droplet upon collision with a solid surface[J]. Physics of Fluids, 2000, 12(3): 531-541.
Outlines

/