Simulation of scramjet with different wall temperatures and difference schemes

  • MA Guangwei ,
  • SUN Mingbo ,
  • ZHAO Guoyan ,
  • LI Fan ,
  • LIANG Changhai ,
  • CHEN Huifeng
Expand
  • College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Received date: 2021-09-01

  Revised date: 2021-09-14

  Online published: 2021-10-09

Supported by

National Natural Science Foundation of China (11925207, 12002381); Scientific Research Plan of National University of Defense Technology in 2019 (ZK19-02); Postgraduate Scientific Research Innovation Project of Hunan Province (CX20200084)

Abstract

In this paper, numerical simulation is carried out for circular scramjet with different wall temperature conditions and difference schemes, and their influence on the numerical results is investigated. The results show that the widely used adiabatic wall boundary condition will lead to the overestimation of the recirculation zone at the interaction position of shock and boundary layer; the flow path contracts and the wall pressure increases. Using high-precision difference scheme cannot calculate the size of recirculation area more accurately, would instead, aggravate the boundary layer separation. The recirculation zone at the interaction position of shock and boundary layer can be minimized when adopting the isothermal wall of 300 K. The simulation results are in good agreement with the experimental results. The numerical results show that for the current configuration, blindly improving the accuracy of the numerical scheme does not get better results. On the contrary, it could make the simulation deviate from the experiment. If the wall temperature conditions are properly modified, perfect simulation results can be obtained even if the accuracy of the numerical scheme is low. Finally, according to the simulation result which is consistent with the experiment, the flow field characteristics of circular scramjet are analyzed, with emphasis on the cavity shear layer and the mass exchange characteristics.

Cite this article

MA Guangwei , SUN Mingbo , ZHAO Guoyan , LI Fan , LIANG Changhai , CHEN Huifeng . Simulation of scramjet with different wall temperatures and difference schemes[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(S1) : 726353 -726353 . DOI: 10.7527/S1000-6893.2021.26353

References

[1] 陈冰, 郑勇, 陈张雷, 等. 临近空间高超声速飞行器天文导航系统综述[J]. 航空学报, 2020, 41(8): 623686. CHEN B, ZHENG Y, CHEN Z L, et al. A review of celestial navigation system on near space hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 623686 (in Chinese).
[2] 左林玄, 张辰琳, 王霄, 等. 高超声速飞机动力需求探讨[J]. 航空学报, 2021, 42(8): 525798. ZUO L X, ZHANG C L, WANG X, et al. Requirement of hypersonic aircraft power[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525798 (in Chinese).
[3] 王振国. 超声速气流中的火焰稳定与传播[M].北京: 科学出版社, 2015: 1-3. WANG Z G. Flame stabilization and propagation in super-sonic flow[M].Beijing: Science Press, 2015: 1-3(in Chinese).
[4] BULMAN M, SIEBENHAAR A. The rebirth of round hypersonic propulsion: AIAA-2006-5035[R].Reston: AIAA, 2006.
[5] PETERSON D M, BOYCE R R, WHEATLEY V. Simulations of mixing in an inlet-fueled axisymmetric scramjet[J]. AIAA Journal, 2013, 51(12): 2823-2832.
[6] LANDSBERG W O, GIBBONS N N, WHEATLEY V, et al. Improving scramjet performance through flow field manipulation[J]. Journal of Propulsion and Power, 2018, 34(3): 578-590.
[7] LIU Q L, BACCARELLA D, MCGANN B, et al. Experimental investigation of single jet and dual jet injection in a supersonic combustor: AIAA-2018-1363[R].Reston: AIAA, 2018.
[8] 彭瀚, 黄玥, 刘晨, 等. 横向射流影响缓燃向爆震转捩过程的试验研究[J]. 航空学报, 2018, 39(2): 121412. PENG H, HUANG Y, LIU C, et al. Experimental study of effects of fluidic obstacle parameters on deflagration-to-detonation transition[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 121412(in Chinese).
[9] SONG W Y, LI M, CAI Y H, et al. Experimental investigation of hydrocarbon-fuel ignition in scramjet combustor[J]. Chinese Journal of Aeronautics, 2004, 17(2): 65-71.
[10] 孟宇, 顾洪斌, 孙文明, 等. 微波增强滑移电弧等离子体辅助超声速燃烧[J]. 航空学报, 2020, 41(2): 123345. MENG Y, GU H B, SUN W M, et al. Microwave enhanced gliding arc plasma assisted supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 123345(in Chinese).
[11] HOU L Y, WEIGAND B, BANICA M. Effects of staged injection on supersonic mixing and combustion[J]. Chinese Journal of Aeronautics, 2011, 24(5): 584-589.
[12] VANYAI T, GRIEVE S, STREET O, et al. Fundamental scramjet combustion experiments using hydrocarbon fuel[J]. Journal of Propulsion and Power, 2019, 35(5): 953-963.
[13] DENMAN Z J, CHAN W Y K, BRIESCHENK S, et al. Ignition experiments of hydrocarbons in a Mach 8 shape-transitioning scramjet engine[J]. Journal of Propulsion and Power, 2016, 32(6): 1462-1471.
[14] LIU Q L, BACCARELLA D, LEE T. Influences of cavity on combustion stabilization in an axisymmetric scramjet: AIAA-2019-1681[R].Reston: AIAA, 2019.
[15] LI F, SUN M B, ZHU J J, et al. Scaling effects on combustion modes in a single-side expansion kerosene-fueled scramjet combustor[J]. Chinese Journal of Aeronautics, 2021, 34(5): 684-690.
[16] LUO F T, SONG W Y, ZHANG Z Q, et al. Experimental and numerical studies of vitiated air effects on hydrogen-fueled supersonic combustor performance[J]. Chinese Journal of Aeronautics, 2012, 25(2): 164-172.
[17] WU X Y, LI X S, DING M, et al. Experimental study on effects of fuel injection on scramjet combustor performance[J]. Chinese Journal of Aeronautics, 2007, 20(6): 488-494.
[18] ZHANG X, RONA A, EDWARDS A. The effect of trailing edge geometry on cavity flow oscillation driven by a supersonic shear layer[J]. Aeronautical Journal, 1998, 102(3): 129-136.
[19] JEYAKUMAR S, ASSIS S M, JAYARAMAN K. Effect of axisymmetric aft wall angle cavity in supersonic flow field[J]. International Journal of Turbo & Jet-Engines, 2018, 35(1): 29-34.
[20] LIU Q L, BACCARELLA D, LANDSBERG W, et al. Cavity flameholding in an optical axisymmetric scramjet in Mach 4.5 flows[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3733-3740.
[21] MA G W, SUN M B, LI F, et al. Effect of fuel injection distance and cavity depth on the mixing and combustion characteristics of a scramjet combustor with a rear-wall-expansion cavity[J]. Acta Astronautica, 2021, 182: 432-445.
[22] ZHAO M J, YE T H. URANS study of pulsed hydrogen jet characteristics and mixing enhancement in supersonic crossflow[J]. International Journal of Hydrogen Energy, 2019, 44(36): 20493-20503.
[23] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[24] SMIRNOV N N, BETELIN V B, NIKITIN V F, et al. Accumulation of errors in numerical simulations of chemically reacting gas dynamics[J]. Acta Astronautica, 2015, 117: 338-355.
[25] LI F, SUN M B, CAI Z, et al. Effects of additional cavity floor injection on the ignition and combustion processes in a Mach 2 supersonic flow[J]. Energies, 2020, 13(18): 4801.
[26] 高天运, 梁剑寒, 孙明波, 等. 单边扩张燃烧室燃烧非对称及非稳态现象研究[J]. 推进技术, 2016, 37(3): 419-427. GAO T Y, LIANG J H, SUN M B, et al. Investigation of asymmetric and unsteady combustion in a supersonic combustor with single-side expansion[J]. Journal of Propulsion Technology, 2016, 37(3): 419-427(in Chinese).
[27] YANG Y X, WANG Z G, SUN M B, et al. Numerical and experimental study on flame structure characteristics in a supersonic combustor with dual-cavity[J]. Acta Astronautica, 2015, 117: 376-389.
[28] BEN-YAKAR A, HANSON R K. Cavity flame-holders for ignition and flame stabilization in scramjets: An overview[J]. Journal of Propulsion and Power, 2001, 17(4): 869-877.
[29] 林旭阳, 金捷, 王方, 等. 壁温对氢燃料超燃燃烧室流动特性的影响研究[J]. 推进技术, 2020, 41(5): 1097-1102. LIN X Y, JIN J, WANG F, et al. Effects of wall temperature on flow characteristics of hydrogen fuel scramjet combustor[J]. Journal of Propulsion Technology, 2020, 41(5): 1097-1102 (in Chinese).
[30] 刘强, 汪洪波, 罗振兵, 等. 超声速燃烧室壁温对流动与燃烧过程的影响分析[C]//全国第十六届分离流、漩涡和流动控制会议论文集, 2016: 225-232. LIU Q, WANG H B, LUO Z B, et al. Analysis of the influence of supersonic combustor wall temperature on flow and combustion process[C]//Proceedings of the 16th National Conference on Separated Flow, Vortex and Flow Control, 2016: 225-232 (in Chinese).
[31] NEUENHAHN T, OLIVIER H. Influence of the wall temperature and the entropy layer effects on double wedge shock boundary layer interactions: AIAA-2006-8136[R].Reston: AIAA, 2006.
[32] KANDA T, CHINZEI N, KUDO K, et al. Autoignited combustion testing in a water-cooled scramjet combustor[J]. Journal of Propulsion and Power, 2004, 20(4): 657-664.
[33] MICKA D J, DRISCOLL J F. Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2397-2404.
Outlines

/