Articles

Aerodynamic design optimization of twice folding wing for tube-launched UAV constrained by flat-angle rotation mechanism

  • CHANG Min ,
  • SUN Yang ,
  • BAI Junqiang ,
  • MENG Xiaoxuan
Expand
  • 1. Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China;
    2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2021-09-07

  Revised date: 2021-09-26

  Online published: 2021-10-09

Supported by

National Natural Science Foundation of China (11902320)

Abstract

The twice folding wing can effectively increase the aspect ratio of the wing of tube-launched UAV and improve the cruising efficiency of the UAV. However, the flat-angle rotation deployment mechanism increases the thickness of the profile between the inner and outer wings, reducing the aerodynamic performance and worsening the cruise performance of the twice folding wing. Therefore, it is of great significance to establish the aerodynamic design method for the twice folding wing. In this paper, an aerodynamic optimization design for the twice folding wing is developed considering the geometric constraints of the second deployment mechanism. Firstly, the Free Form Deformation (FFD) technique is used to parameterize the twice folding wing. Then, combined with CFD solver and Genetic Algorithm, an aerodynamic optimization design system is developed. Finally, the absolute thickness constraint is transformed into the constraint of the variation range of the design variables for the FFD control points by solving the influence coefficient. The optimization design system is used to the design optimization of the twice folding wing under design conditions lift coeffiaient 0.68 considering constraints of mechanism. The result shows that the aerodynamic drag coefficient of the twice folding wing decreases by 9.3%, satisfying the constraint of the deployment mechanism. The developed optimization design system can effectively improve the aerodynamic characteristics of the twice folding wing.

Cite this article

CHANG Min , SUN Yang , BAI Junqiang , MENG Xiaoxuan . Aerodynamic design optimization of twice folding wing for tube-launched UAV constrained by flat-angle rotation mechanism[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(11) : 526331 -526331 . DOI: 10.7527/S1000-6893.2021.26331

References

[1] OLSON E C, SELBERG B P. Experimental determination of improved aerodynamic characteristics utilizing biplane wing configurations[J]. Journal of Aircraft, 1976, 13(4):256-261.
[2] WOLKOVITCH J. Subsonic VSTOL aircraft configurations with tandem wings[J]. Journal of Aircraft, 1979, 16(9):605-611.
[3] RHODES M D, SELBERG B P. Benefits of dual wings over single wings for high-performance business airplanes[J]. Journal of Aircraft, 1984, 21(2):116-127.
[4] ROSID N H, IRSYAD LUKMAN E, AHMAD FADLILLAH M, et al. Aerodynamic characteristics of tube-launched tandem wing unmanned aerial vehicle[J]. Journal of Physics:Conference Series, 2018, 1005:012015.
[5] ZHANG G Q, YU S C M. Unsteady aerodynamics of a morphing tandem-wing unmanned aerial vehicle[J]. Journal of Aircraft, 2012, 49(5):1315-1323.
[6] YUE T, WANG L X, AI J Q. Flight performance characteristics of a tailless folding wing morphing aircraft:AIAA-2013-0623[R]. Reston:AIAA, 2013.
[7] SEIGLER T M, NEAL D A. Analysis of transition stability for morphing aircraft[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(6):1947-1954.
[8] GAO L, JIN H Z, ZHAO J, et al. Flight dynamics modeling and control of a novel catapult launched tandem-wing micro aerial vehicle with variable sweep[J]. IEEE Access, 6:42294-42308.
[9] ZHU Z, GUO H W, MA J J. Aerodynamic layout optimization design of a barrel-launched UAV wing considering control capability of multiple control surfaces[J]. Aerospace Science and Technology, 2019, 93:105297.
[10] 李文娟. 二次折叠翼面展开机构设计及工作可靠性仿真研究[D]. 杭州:浙江理工大学, 2016:7-9. LI W J. Design and working reliability simulation research on deployable mechanism of twice folding wing[D]. Hangzhou:Zhejiang Sci-Tech University, 2016:7-9(in Chinese).
[11] 昌敏, 孟晓轩, 陈娇娇, 等. 筒式发射的折叠翼无人机:CN209274879U[P]. 2019-08-20. CHANG M, MENG XX, CHEN J J, et al. Folding-wing unmanned aerial vehicle for barrel-type launching:CN209274879U[P]. 2019-08-20(in Chinese).
[12] SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[C]//Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. New York:ACM, 1986:151-160.
[13] 陈颂. 基于梯度的气动外形优化设计方法及应用[D]. 西安:西北工业大学, 2016:49-53. CHEN S. Gradient based aerodynamic shape optimization design and applications[D]. Xi'an:Northwestern Polytechnical University, 2016:49-53(in Chinese).
[14] LAMOUSIN H J, WAGGENSPACK N N. NURBS-based free-form deformations[J]. IEEE Computer Graphics and Applications, 1994, 14(6):59-65.
[15] 王丹, 白俊强, 黄江涛. FFD方法在气动优化设计中的应用[J]. 中国科学:物理学力学天文学, 2014, 44(3):267-277. WANG D, BAI J Q, HUANG J T. The application of FFD method in aerodynamic optimization design[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2014, 44(3):267-277(in Chinese).
[16] SHEN Y, HUANG W, YAN L, et al. Constraint-based parameterization using FFD and multi-objective design optimization of a hypersonic vehicle[J]. Aerospace Science and Technology, 2020, 100:105788.
[17] 黄江涛, 高正红, 白俊强, 等. 基于任意空间属性FFD技术的融合式翼稍小翼稳健型气动优化设计[J]. 航空学报, 2013, 34(1):37-45. HUANG J T, GAO Z H, BAI J Q, et al. Study of robust winglet design based on arbitrary space shape FFD technique[J]. ActaAeronautica et Astronautica Sinica, 2013, 34(1):37-45(in Chinese).
[18] 张伟伟, 高传强, 叶正寅. 气动弹性计算中网格变形方法研究进展[J]. 航空学报, 2014, 35(2):303-319. ZHANG W W, GAO C Q, YE Z Y. Research progress on mesh deformation method in computational aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):303-319(in Chinese).
[19] 唐静, 邓有奇, 马明生, 等. 飞翼气动优化中参数化和网格变形技术[J]. 航空学报, 2015, 36(5):1480-1490. TANG J, DENG Y Q, MA M S, et al. Parameterization and grid deformationtechniques for flying-wing aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1480-1490(in Chinese).
[20] 王荣, 白鹏. 基于FFD与网格重构的飞翼无人机外形优化设计[J]. 航空科学技术, 2018, 29(10):43-47. WANG R, BAI P. Aerodynamic design optimization for a flying-wing UAV based on FFD and grid reconstruction[J]. Aeronautical Science & Technology, 2018, 29(10):43-47(in Chinese).
[21] Hounjet M H L, Meijer J J. Evaluation of elastomechanical and aerodynamic data transfer methods for non-planar configurations in computational aeroelastic analysis[M]. Amsterdan:National Aerospace Laboratory NLR, 1995.
[22] 张增海, 谢军龙. 低雷诺数翼型的气动外形优化设计[J]. 能源与节能, 2020(3):50-52, 59. ZHANG Z H, XIEJ L. Aerodynamic shape optimization design of low Reynolds number airfoil[J]. Energy and Energy Conservation, 2020(3):50-52, 59(in Chinese).
[23] 李润泽, 张宇飞, 陈海昕. 超临界机翼多目标气动优化设计的策略与方法[J]. 航空学报, 2020, 41(5):623409. LI R Z, ZHANG Y F, CHEN H X. Strategies and methods for multi-objective aerodynamic optimization design for supercritical wings[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):623409(in Chinese).
[24] 李霓, 布树辉, 尚柏林, 等. 飞行器智能设计愿景与关键问题[J]. 航空学报, 2021, 42(4):524752. LI N, BU S H, SHANG B L,et al. Aircraft intelligent design:visions and key technologies[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524752(in Chinese).
[25] 童歆, 羌晓青, 虞培祥, 等. 基于曲率分布控制的叶型前缘设计方法[J]. 航空学报, 2021, 42(7):124712. TONG X, QIANG X Q, YU P X,et al. Leading edge design method based on curvature distribution control[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7):124712(in Chinese).
[26] HOUCK C R, JOINES J A, KAY M G. A genetic algorithm for function optimization:A MATLAB implementation[J]. Ncsu-ie tr, 1995, 95(09):1-10.
[27] 郭小良, 裴锦华, 杨忠清, 等. 无人机折叠机翼展开运动特性研究[J]. 南京航空航天大学学报, 2006, 38(4):438-441. GUO X L, PEI J H, YANG Z Q, et al. Movementcharacteristic of UAV folding wings[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006, 38(4):438-441(in Chinese).
Outlines

/