The wall function approach is implemented in the National Numerical Wind Tunnel software coupling the SST k-ω model through an iteration of the friction velocity and update of the turbulence viscosity at the virtual point to modify the wall shear stress. Verification of this approach by the compression corner and the high-speed flight vehicle shows that: the wall function approach with the coarse mesh (y+≤200) significantly improves the velocity distribution of the turbulence boundary layer and skin-friction with a 75% decrease in the computation time compared with the fine mesh. For the complex flight vehicle, the total mesh amount decreases by about 38% when the wall distance widens between the wall layers, and the CPU time consumption decrease by 60% with the same numerical setup. The shock/boundary layer interaction exists near the inlet, where similar flow separation and shock reflection are obtained for both the fine mesh and coarse mesh with the wall function approach. Comparison of axial force variation shows that the adoption of the wall function reduces the prediction error of skin friction from 40% to 4%, and the whole axial force from 15% to 2%. Overall, the wall function approach is an efficient numerical method for the turbulence force prediction of flight vehicles.
[1] TENNEKES H, LUMLEY J L. A first course in turbulence[M]. Boston: MIT Press, 1972: 149-165.
[2] NICHOLS R. Development and validation of a two-equation turbulence model with wall functions for compressible flow[C]//14th Applied Aerodynamics Conference. Reston: AIAA, 1996.
[3] VIEGAS J, RUBESIN M, HORSTMAN C. On the use of wall functions as boundary conditions for two-dimensional separated compressible flows[C]//23rd Aerospace Sciences Meeting. Reston: AIAA, 1985.
[4] TAO Z, WU H J, YOU R Q, et al. Turbulent characteristics and rotation correction of wall function in rotating channel with high local rotation parameter[J]. Chinese Journal of Aeronautics, 2018, 31(10): 1985-1999.
[5] LIU J, WU S P. Generalized wall function and its application to compressible turbulent boundary layer over a flat plate[J]. Journal of Physics: Conference Series, 2017, 822: 012017.
[6] HE X Z, ZHAO H Y, LE J L. Application of wall function boundary condition considering heat transfer and compressibility[J]. Acta Aerodynamica Sinica, 2006, 24(4): 450-453 (in Chinese). 贺旭照, 赵慧勇, 乐嘉陵. 考虑可压缩与热传导的壁面函数边界条件及其应用[J]. 空气动力学学报, 2006, 24(4): 450-453.
[7] HE X Z, ZHAO H Y, LE J L. Aerodynamic force and heat of hypersonic laminar and turbulent flows[J]. Chinese Journal of Computational Physics, 2008, 25(5): 555-560 (in Chinese). 贺旭照, 赵慧勇, 乐嘉陵. 吸气式高超声速飞行器气动力气动热的数值模拟方法与应用[J]. 计算物理, 2008, 25(5): 555-560.
[8] WU X J, MA M S, DENG Y Q, et al. Two turbulence models for the computation of transonic flow[J]. Acta Aerodynamica Sinica, 2008, 26(1): 85-90 (in Chinese). 吴晓军, 马明生, 邓有奇, 等. 两种湍流模型在跨声速绕流计算的应用研究[J]. 空气动力学学报, 2008, 26(1): 85-90.
[9] XIAO H L, LUO J S. Improvement of sub-grid model in large eddy simulation and applications in turbulent channel flow[J]. Journal of Aerospace Power, 2007, 22(4): 583-587 (in Chinese). 肖红林, 罗纪生. 大涡模拟中亚格子模型的改进及其在槽道湍流中的应用[J]. 航空动力学报, 2007, 22(4): 583-587.
[10] GAO Z X, JIANG C W, LEE C. Improvement and application of wall function boundary condition for high-speed compressible flows[J]. Science China Technological Sciences, 2013, 56(10): 2501-2515.
[11] TAO Z, WU H J, YOU R Q, et al. Turbulent characteristics and rotation correction of wall function in rotating channel with high local rotation parameter[J]. Chinese Journal of Aeronautics, 2018, 31(10): 1985-1999.
[12] GRANVILLE P S. A modified van driest formula for the mixing length of turbulent boundary layers in pressure gradients[J]. Journal of Fluids Engineering, 1989, 111(1): 94-97.
[13] DURBIN P A, BELCHER S E. Scaling of adverse-pressure-gradient turbulent boundary layers[J]. Journal of Fluid Mechanics, 1992, 238: 699-722.
[14] MAO M L, MIN Y B, WANG X G, et al. Overview of wall functions for compressible turbulent boundary layers[J]. Acta Aerodynamica Sinica, 2021, 39(2): 1-11 (in Chinese). 毛枚良, 闵耀兵, 王新光, 等. 可压缩湍流边界层壁面函数方法综述[J]. 空气动力学学报, 2021, 39(2): 1-11.
[15] CRAFT T J, GERASIMOV A V, IACOVIDES H, et al. Progress in the generalization of wall-function treatments[J]. International Journal of Heat and Fluid Flow, 2002, 23(2): 148-160.
[16] WANG X G, CHEN Q, WAN Z, et al. Studyon an analytical wall function approach including compressibility[J]. Journal of Astronautics, 2021, 42(6): 731-739 (in Chinese). 王新光, 陈琦, 万钊, 等. 解析壁面函数的可压缩效应修正研究[J]. 宇航学报, 2021, 42(6): 731-739.
[17] FRINK N T. Tetrahedral unstructured Navier-Stokes method for turbulent flows[J]. AIAA Journal, 1998, 36(11): 1975-1982.
[18] GONCALVES E, HOUDEVILLE R. Reassessment of the wall functions approach for RANS computations[J]. Aerospace Science and Technology, 2001, 5(1): 1-14.
[19] ESCH T, MENTER F R. Heat transfer predictions using advanced two-equation turbulence models[C]//The 4th Internal Symposium, Turbulence, Heat and Mass Transfer, 2003.
[20] TIDRIRI M D. Domain decomposition for compressible Navier-Stokes equations with different discretizations and formulations[J]. Journal of Computational Physics, 1995, 119(2): 271-282.
[21] KNOPP T, ALRUTZ T, SCHWAMBORN D. A grid and flow adaptive wall-function method for RANS turbulence modelling[J]. Journal of Computational Physics, 2006, 220(1): 19-40.
[22] KALITZIN G, MEDIC G, IACCARINO G, et al. Near-wall behavior of RANS turbulence models and implications for wall functions[J]. Journal of Computational Physics, 2005, 204(1): 265-291.
[23] ZHEN T K, ZUBAIR M, AHMAD K A. Experimental and numerical investigation of the effects of passive vortex generators onAludra UAV performance[J]. Chinese Journal of Aeronautics, 2011, 24(5): 577-583.
[24] WANG K, XU G Q, SUN J N, et al. Effects ofdiameter ratio on the characteristics of flow and heat transfer in hybrid cooling configuration[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 823-828 (in Chinese). 王开, 徐国强, 孙纪宁, 等. 直径比对冲击气膜组合冷却流动与换热的影响[J]. 航空学报, 2008, 29(4): 823-828.
[25] VIESER W, ESCH T, MENTER F. Heat transfer predictions using advanced two-equation turbulence models: CFX Technical Memorandum CFX-VAL10/0602[R]. Pittsburgh: CFX, 2002.
[26] SETTLES G S, DODSON L J. Supersonic and hypersonic shock/boundary-layer interaction database[J]. AIAA Journal, 1994, 32(7): 1377-1383.
[27] GEROLYMOS G A, SAURET E, VALLET I. Oblique-shock-wave/boundary-layer interaction using near-wall Reynolds-stress models[J]. AIAA Journal, 2004, 42(6): 1089-1100.