Fluid Mechanics and Flight Mechanics

Aero-acoustic prediction of turboprop models with and without propellers in landing configuration

  • Yue WANG ,
  • Wenping SONG ,
  • Minhua SONG ,
  • Zhonghua HAN ,
  • Yanjun ZHANG ,
  • Wutao LEI
Expand
  • 1.National Key Laboratory of Aerodynamic Design and Research,School of Aeronautics,Northwestern Polytechnical University,Xi’an  710072,China
    2.AVIC The First Aircraft Institute,Xi’an  710089,China
E-mail: wpsong@nwpu.edu.cn

Received date: 2021-07-15

  Revised date: 2021-08-03

  Accepted date: 2021-08-27

  Online published: 2021-09-06

Supported by

National Natural Science Foundation of China(11772261);Natural Science Foundation of Shannxi Province(2023-JC-ZD-01)

Abstract

In this study, a hybrid method combining hybrid RANS/LES simulation on the fine Cartesian mesh and FW-H acoustic analogy is proposed for aero-acoustic prediction of two turboprop models (1/6 scaled) in the landing configuration: one is the powered model with twin propellers, and the other is the unpowered model without propeller. By comparing the near-field flow structure, data of pressure distribution and pulsation on the fuselage surface, distribution of Lamb vector divergence, and noise data at the far-field observation point, it is found that the surface pressure pulsation at the wing tip, flap side edge, wing-flap connector and fuselage-flap connection part are stronger than that at other areas in the unpowered model. In contrast, the surface pressure pulsation at the engine compartment, the wing leading edge and the flap are amplified significantly under the interference of propeller slipstream in the powered model. Far-field noise observation data show that the noise prediction method used in this paper can accurately capture not only the main frequency of propeller rotation noise, but also the 2, 3 and 4 times harmonic frequencies. The final results show that the rotation noise generated by the propellers is the main noise source with the highest amplitude. The overall sound pressure level of the powered model is 20 dB higher than that of the unpowered model. Therefore, it is suggested that the noise reduction design of this turboprop aircraft should focus on noise reduction of the propeller.

Cite this article

Yue WANG , Wenping SONG , Minhua SONG , Zhonghua HAN , Yanjun ZHANG , Wutao LEI . Aero-acoustic prediction of turboprop models with and without propellers in landing configuration[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(11) : 126110 -126110 . DOI: 10.7527/S1000-6893.2021.26110

References

1 WILLIAMS J E F, HALL L H. Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane[J]. Journal of Fluid Mechanics197040(4): 657-670.
2 FINK M R. Approximate prediction of airframe noise[J]. Journal of Aircraft197613(11): 833-834.
3 WHITFIELD C E. NASA’s quiet aircraft technology project [C]∥24th International Congress of the Aeronautical Sciences, 2004.
4 BRUNET M, LAFAGE R, AUBRY S, et al. The Clean Sky programme: Environmental benefits at aircraft level: AIAA-2015-2390[R]. Reston: AIAA, 2015.
5 BOWN N, KNEPPER A. Aircraft and propulsion design requirements for the IMPACTA project: ITS 01675[R]. 2013.
6 刘远强, 王艳冰, 项松, 等. 面向电动飞机应用的不同叶尖螺旋桨噪声特性[J]. 航空学报202142(3): 624567.
  LIU Y Q, WANG Y B, XIANG S, et al. Noise characteristics of propellers with different blade tips for electric aircraft[J]. Acta Aeronautica et Astronautica Sinica202142(3): 624567 (in Chinese).
7 ZHANG Y F, CHEN H X, WANG K, et al. Aeroacoustic prediction of a multi-element airfoil using wall-modeled large-eddy simulation[J]. AIAA Journal201755(12): 4219-4233.
8 GAO J H, LI X D, LIN D K. Numerical simulation of the 30P30N high-lift airfoil noise with spectral difference method[J]. AIAA Journal202058(6): 2517-2532.
9 XIAO Z X, LIU J, LUO K Y, et al. Investigation of flows around a rudimentary landing gear with advanced detached-eddy-simulation approaches[J]. AIAA Journal201351(1): 107-125.
10 刘兴强, 黄文超, 李红丽. 某型飞机前起落架噪声特性研究[J]. 西北工业大学学报201634(3): 456-459.
  LIU X Q, HUANG W C, LI H L. Research on noise characteristics for a nose landing gear[J]. Journal of Northwestern Polytechnical University201634(3): 456-459 (in Chinese).
11 龙双丽, 聂宏, 薛彩军, 等. 飞机起落架气动噪声特性仿真与试验[J]. 航空学报201233(6): 1002-1013.
  LONG S L, NIE H, XUE C J, et al. Simulation and experiment on aeroacoustic noise characteristics of aircraft landing gear[J]. Acta Aeronautica et Astronautica Sinica201233(6): 1002-1013 (in Chinese).
12 GAO J H, XU X, LI X D. Numerical simulation of supersonic twin-jet noise with high-order finite difference scheme: AIAA-2016-2938[R]. Reston: AIAA, 2016.
13 XU X H, HE J Y, LI X D, et al. 3-D jet noise prediction for separate flow nozzles with pylon interaction: AIAA-2015-0522[R].Reston: AIAA, 2015.
14 ZHAO L, QIAO W Y, JI L. Computational fluid dynamics simulation of sound propagation through a blade row[J]. The Journal of the Acoustical Society of America2012132(4): 2210-2217.
15 韩忠华, 宋文萍, 乔志德. Kirchhoff方法在旋翼前飞噪声预测中的应用研究[J]. 空气动力学学报200422(1): 47-51.
  HAN Z H, SONG W P, QIAO Z D. Aeroacoustic noise prediction of helicopter rotor in forward flight using Kirchhoff method[J]. Acta Aerodynamica Sinica200422(1): 47-51 (in Chinese).
16 王阳, 徐国华, 招启军. 基于非结构网格CFD技术的旋翼气动噪声计算方法研究[J]. 空气动力学学报201129(5): 559-566.
  WANG Y, XU G H, ZHAO Q J. Numerical method for predicting rotor aerodynamic noise based on unstructured-grid CFD technology[J]. Acta Aerodynamica Sinica201129(5): 559-566 (in Chinese).
17 赵帅, 段卓毅, 李杰, 等. 涡桨飞机螺旋桨滑流气动干扰效应及流动机理[J]. 航空学报201940(4): 122469.
  ZHAO S, DUAN Z Y, LI J, et al. Interference effects and flow mechanism of propeller slipstream for turboprop aircraft[J]. Acta Aeronautica et Astronautica Sinica201940(4): 122469 (in Chinese).
18 赵帅, 段卓毅, 李杰, 等. 螺旋桨旋转方向对飞机俯仰力矩特性的影响[J]. 航空学报202041(8): 123619.
  ZHAO S, DUAN Z Y, LI J, et al. Effects of propeller rotation direction on pitching moment characteristics of aircraft[J]. Acta Aeronautica et Astronautica Sinica202041(8): 123619 (in Chinese).
19 WANG M, FREUND J B, LELE S K. Computational prediction of flow-generated sound[J]. Annual Review of Fluid Mechanics200638: 483-512.
20 SPALART P R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow200021(3): 252-263.
21 SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow200829(6): 1638-1649.
22 宋文萍, 余雷, 韩忠华. 飞机机体气动噪声计算方法综述[J]. 航空工程进展20101(2): 125-131.
  SONG W P, YU L, HAN Z H. Status of investigation on airframe noise computation[J]. Advances in Aeronautical Science and Engineering20101(2): 125-131 (in Chinese).
23 FARASSAT F, SUCCI G P. A review of propeller discrete frequency noise prediction technology with emphasis on two current methods for time domain calculations[J]. Journal of Sound and Vibration198071(3): 399-419.
24 宋敏华, 宋文萍, 王跃, 等. 涡桨飞机缩比模型机体噪声预测研究[J]. 西北工业大学学报202139(6): 1169-1178.
  SONG M H, SONG W P, WANG Y, et al. Noise prediction research of a scaled turboprop aircraft[J]. Journal of Northwestern Polytechnical University202139(6): 1169-1178 (in Chinese).
Outlines

/