Electronics and Electrical Engineering and Control

Research of combined fixed-wing UAV based on wingtip chained

  • ZHOU Wei ,
  • MA Peiyang ,
  • GUO Zheng ,
  • WANG Daoping ,
  • ZHOU Ruisun
Expand
  • 1. Missile Engineering College, Rocket Force University of Engineering, Xi'an 710025, China;
    2. Unit 66011 of PLA, Beijing 102600, China;
    3. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China;
    4. Basic Disciplines Department, Rocket Force University of Engineering, Xi'an 710025, China

Received date: 2021-06-10

  Revised date: 2021-06-29

  Online published: 2021-09-06

Abstract

Current cluster Unmanned Aerial Vehicles (UAVs) have the problem of short duration, and traditional high-altitude long-endurance UAVs are inflexible for both tasks and functions. They cannot meet the needs of future complex tasks. The combined fixed-wing UAV scheme--unmanned aerial system with chained wings is thus proposed. In this paper, the development process of the wingtip drag technology of manned fixed-wing aircraft in the United States after World War Ⅱ is introduced, and the research progress of the wingtip connection technology in China, the United States and Germany in recent years is reported. The advantages of chained wings in terms of lift-drag ratio, flight speed, endurance time and cruising altitude are obtained by theoretical research and comparative analysis. The key technologies involved in the chained wing unmanned system are then summarized, and future development of unmanned aerial system with chained wings is also discussed.

Cite this article

ZHOU Wei , MA Peiyang , GUO Zheng , WANG Daoping , ZHOU Ruisun . Research of combined fixed-wing UAV based on wingtip chained[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(9) : 325946 -325946 . DOI: 10.7527/S1000-6893.2021.25946

References

[1] QI S J, JING L, WANG Y L. Overview of UAV system and development trend[J]. Aerodynamic Missile Journal, 2018(4): 17-21 (in Chinese). 祁圣君, 井立, 王亚龙. 无人机系统及发展趋势综述[J]. 飞航导弹, 2018(4): 17-21.
[2] JIA Y N, TIAN S Y, LI Q. Recent development of unmanned aerial vehicle swarms[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723738 (in Chinese). 贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J]. 航空学报, 2020, 41(S1): 723738.
[3] WANG X K, LIU Z H, CONG Y R, et al. Miniature fixed-wing UAV swarms: review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 023732 (in Chinese). 王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报, 2020, 41(4): 023732.
[4] ZHOU R S, ZHOU W, WANG D P, et al. Overview of UAV link wing system technology[C]//The 5th Joint Conference of Aerospace Propulsion (JCAP) Technical Conference. Beijing: CAST Alliance for Aero-Engine Industry and Acadmy, 2020: 285-293 (in Chinese). 周睿孙, 周伟, 王道平, 等. 无人机链翼系统技术综述[C]//第五届空天动力联合会议. 北京: 中国科协航空发动机产学联合体, 2020: 285-293.
[5] ANDERSON C. Dangerous experiments: wingtip coupling at 15, 000 feet[J]. Flight Journal, 2000, 5(6): 64-72.
[6] MICHEL M. Tip-Tow to the Tom-Tom[EB/OL]. (2009-10-8)[2020-12-20]. https://www.kaiserslauternamerican.com/tip-tow-to-the-tom-tom/.
[7] MILLER J. Project "Tom-Tom"[J]. Aerophile, 1977, 1(12): 161-164.
[8] NEELY R H. Flutter tests of a 1/25-scale model of the B-36 J/RF-84F tip-coupled airplane configuration in the Langley 19-foot pressure tunnel: NACA RM SL56A256 Virginia: NASA Langley Research Center, 1956.
[9] KÖTHE A, BEHRENS A, HAMANN A, et al. Closed-Loop flight tests with an unmanned experimental multi-body aircraft[C]//17th International Forum on Aeroelasticity and Structural Dynamics. Como: IFASD, 2017.
[10] CRACAU D. The AlphaLink compound aircraft: aviation outside the Box![EB/OL]. (2020-10-19)[2020-12-28]. https://www.kickstarter.com/projects/alphalink-aero/take-off-1.
[11] WLACH S, BALMER G, HERMANN M, et al. ELAHA-elastic aircraft for high altitudes concept and current development state of an unconventional stratospheric UAV[C]//23rd ESA Symposium on European Rocket and Balloon Programmes and Related Research. Visby: ESA, 2017.
[12] MAGILL S. Compound aircraft transport study: Wingtip-docking compared to formation flight[C]//41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
[13] MAGILL S, DURHAM W. Modeling and simulation of wingtip-docked flight[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2002.
[14] MONTALVO C. Meta aircraft flight dynamics and controls[D]. Atlanta: Georgia Institute of Technology, 2014.
[15] MONTALVO C, COSTELLO M. Meta aircraft flight dynamics[J]. Journal of Aircraft, 2014, 52(1): 107-115.
[16] MONTALVO C, COSTELLO M. Meta aircraft connection dynamics[C]//AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2012.
[17] CARITHERS C, MONTALVO C. Experimental control of two connected fixed wing aircraft[J]. Aerospace, 2018, 5(4): 113.
[18] COBAR M, MONTALVO C. Takeoff and landing of a wing-tip-connected meta aircraft with feedback control[J]. Journal of Aircraft, 2021, 58(4): 733-742.
[19] COOPER J R, ROTHHAAR P M. Dynamics and control of In-flight wing tip docking[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(11): 2327-2337.
[20] ZHANG L G, WANG F, TONG G, et al. Conjoined aircraft with straight layout: CN102658866A[P]. 2012-09-12 (in Chinese). 张利国, 王锋, 佟刚, 等. 一种平直布局的联体飞机: CN102658866A[P]. 2012-09-12.
[21] ZHANG L G, WANG F, TONG G, et al. Axisymmetric conjoined airplane of unit airplanes with flying wings: CN202686762U[P]. 2013-01-23 (in Chinese). 张利国, 王锋, 佟刚, 等. 一种轴对称布局具有飞翼结构单元飞机的联体飞机: CN202686762U[P]. 2013-01-23.
[22] ZHANG L G, WANG F, TONG G, et al. Connection device for conjoined airplane: CN202686750U[P]. 2013-01-23 (in Chinese). 张利国, 王锋, 佟刚, 等. 用于联体飞机的连接装置: CN202686750U[P]. 2013-01-23.
[23] AN C, XIE C, MENG Y, et al. Flight mechanical analysis and test of unmanned multi-body aircraft[C]//International Forum on Aeroelasticity and Structural Dynamics. Savannah: IFASD, 2019.
[24] YANG Y P, ZHANG Z J, YING P, et al. Flexible modular swarming UAV: innovative, opportunities, and technical challenges[J]. Flight Dynamics, 2021, 39(2): 1-9, 15 (in Chinese). 杨延平, 张子健, 应培, 等. 集群组合式柔性无人机: 创新、机遇及技术挑战[J]. 飞行力学, 2021, 39(2): 1-9, 15.
[25] WU M J, SHI Z W, XIAO T H, et al. Effect of wingtip connection on the energy and flight endurance performance of solar aircraft[J]. Aerospace Science and Technology, 2021, 108: 106404.
[26] ZHOU R S, ZHOU W, WANG D P, et al. Design of multi-UAV formation planning system based on Matlab and QGC. [J]. Journal of Rocket Force University of Engineering, 2020, 34(3): 18-24 (in Chinese). 周睿孙, 周伟, 王道平, 等. 基于Matlab和QGC联合的多无人机规划调度系统设计[J]. 火箭军工程大学学报, 2020, 34(3): 18-24.
[27] ZHOU W, MA P Y, ZHOU R S, et al. Attitude control of two chained wing UAVs based on PID principle[C]//Unmanned Systems Summit 2021 Proceedings. Changsha: National University of Defense Technology, 2021 (in Chinese). 周伟, 马培洋, 周睿孙, 等. 基于PID原理的双机链翼无人机姿态控制[C]//2021年无人系统高峰论坛(USS 2021)论文集. 长沙: 国防科技大学, 2021.
[28] ZHOU R S. Design, analysis and feasibility study of dual-plane link-wing combined platform[D]. Xi'an: Rocket Force University of Engineering, 2020: 71-78 (in Chinese). 周睿孙. 双机链翼组合平台设计、分析及其飞行可行性研究[D]. 西安: 火箭军工程大学, 2020: 71-78.
[29] BEHRENS A, GRUND T, EBERT C, et al. Investigation of the aerodynamic interaction between two wings in a parallel flight with close lateral proximity[J]. CEAS Aeronautical Journal, 2020, 11(2): 553-563.
[30] MARTIN S. Model aircraft aerodynamics[M]. XIAO Z Y, MA D L, translated. Beijing: Aviation Industry Press, 2007 (in Chinese). MARTIN S. 模型飞机空气动力学[M]. 肖治垣, 马东立, 译. 北京: 航空工业出版社, 2007.
[31] CHEN L, DUAN D P. Flight principle of large pneumatic/static aircraft[M]. Shanghai: Shanghai Jiao Tong University Press, 2015 (in Chinese). 陈丽, 段登平. 大气动/静飞行器飞行原理[M]. 上海: 上海交通大学出版社, 2015.
[32] LIU H. Aircraft general design[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2019 (in Chinese). 刘虎. 飞机总体设计[M]. 北京: 北京航空航天大学出版社, 2019.
[33] ZHU B L. UAV aerodynamics[M]. Beijing: Aviation Industry Press, 2006 (in Chinese). 朱宝鎏. 无人飞机空气动力学[M]. 北京: 航空工业出版社, 2006.
[34] YANG B W. Formulization of standard atmospheric parameters[J]. Journal of Astronautics, 1983, 4(1): 83-86 (in Chinese). 杨炳尉. 标准大气参数的公式表示[J]. 宇航学报, 1983, 4(1): 83-86.
[35] MA D L, ZHANG L, YANG M Q, et al. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623418 (in Chinese). 马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3): 623418.
[36] NOLL T E, BROWN J M, PEREZ-DAVIS M E, et al. Investigation of the Helios prototype aircraft mishap volume Ⅰ mishap report: 23681-2199[R]. Washington, D.C. : NASA, 2004.
[37] GOMEZ M L, PARKS R, WOODWORTH A J. Wing tip docking system for aircraft: US8172172B2[P]. 2012-05-08.
[38] GU L X, GONG C L. Critical technology analysis of multidisciplinary design optimization in flight vehicle[J]. Spacecraft Engineering, 2007, 16(3): 33-37 (in Chinese). 谷良贤, 龚春林. 飞行器多学科设计优化关键技术分析[J]. 航天器工程, 2007, 16(3): 33-37.
[39] HUANG J T, ZHOU Z, LIU G, et al. Numerical study of aero-structural multidisciplinary lagged coupled adjoint system for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121731 (in Chinese). 黄江涛, 周铸, 刘刚, 等. 飞行器气动/结构多学科延迟耦合伴随系统数值研究[J]. 航空学报, 2018, 39(5): 121731.
[40] HUANG J T, LIU G, GAO Z H, et al. Current situation and development trend of multidisciplinary coupled adjoint system for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623404 (in Chinese). 黄江涛, 刘刚, 高正红, 等. 飞行器多学科耦合伴随体系的现状与发展趋势[J]. 航空学报, 2020, 41(5): 623404.
[41] LI N, BU S H, SHANG B L, et al. Aircraft intelligent design: visions and key technologies[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524752 (in Chinese). 李霓, 布树辉, 尚柏林, 等. 飞行器智能设计愿景与关键问题[J]. 航空学报, 2021, 42(4): 524752.
[42] ZHOU W, LI S, WANG X R, et al. Sorting method for design specifications of solar powered UAV based on FQFD[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 221299 (in Chinese). 周伟, 李赛, 王学仁, 等. 基于FQFD的太阳能无人机设计指标排序方法[J]. 航空学报, 2018, 39(2): 221299.
[43] WANG W. Exploring nonlinear aeroelastic and flight dynamics of solar-powered UAV[D]. Xi'an: Northwestern Polytechnical University, 2015 (in Chinese). 王伟. 太阳能无人机非线性气动弹性及飞行力学研究[D]. 西安: 西北工业大学, 2015.
[44] WANG W, ZHOU Z, ZHU X P, et al. Exploring aeroelastic stability of very flexible solar powered UAV with geometrically large deformation[J]. Journal of Northwestern Polytechnical University, 2015, 33(1): 1-8 (in Chinese). 王伟, 周洲, 祝小平, 等. 几何大变形太阳能无人机非线性气动弹性稳定性研究[J]. 西北工业大学学报, 2015, 33(1): 1-8.
[45] DUAN J B, ZHOU Z, WANG W, et al. A method for aeroelastic load redistribution of very flexible wing with a high-aspect-ratio[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 799-809 (in Chinese). 段静波, 周洲, 王伟, 等. 大展弦比大柔性机翼载荷分布求解的一种方法[J]. 航空学报, 2016, 37(3): 799-809.
[46] YU Z Q, ZHANG Y M, JIANG B, et al. Distributed adaptive fault-tolerant close formation flight control of multiple trailing fixed-wing UAVs[J]. ISA Transactions, 2020, 106: 181-199.
[47] LIU Z Y, TAO Y, SHI Z W, et al. Investigation on formation flight in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 20-25 (in Chinese). 刘志勇, 陶洋, 史志伟, 等. 编队飞行风洞实验研究[J]. 实验流体力学, 2016, 30(4): 20-25.
[48] XIANG J W, ZHANG X J, ZHAO S W, et al. Recent advance in high-aspect-ratio composite wing[J]. Journal of Harbin Institute of Technology, 2017, 49(10): 1-14 (in Chinese). 向锦武, 张雪娇, 赵仕伟, 等. 大展弦比复合材料机翼研究进展[J]. 哈尔滨工业大学学报, 2017, 49(10): 1-14.
[49] XIANG J W, KAN Z, SHAO H Y, et al. A review of key technologies for long-endurance unmanned aerial vehicle[J]. Journal of Harbin Institute of Technology, 2020, 52(6): 57-77 (in Chinese). 向锦武, 阚梓, 邵浩原, 等. 长航时无人机关键技术研究进展[J]. 哈尔滨工业大学学报, 2020, 52(6): 57-77.
[50] GONG C L, CHI F H, GU L X, et al. Optimal control method for distributed morphing aircraft based on Karhunen-Loève expansion[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 121518 (in Chinese). 龚春林, 赤丰华, 谷良贤, 等. 基于Karhunen-Loève展开的分布式变体飞行器最优控制方法[J]. 航空学报, 2018, 39(2): 121518.
[51] FU X. Design and aeroelasticity characteristics analysis of flexible wing with variable chordwise camber[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese). 伏欣. 弦向可变弯度机翼设计及气动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[52] DONG W Q, HE F. Hierarchical and distributed generation of information interaction topology for large scale UAV formation[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 324380 (in Chinese). 董文奇, 何锋. 大规模UAV编队信息交互拓扑的分级分布式生成[J]. 航空学报, 2021, 42(6): 324380.
[53] WANG C, GAO C Z. Research on communication networks topology reconstruction and key technologies of UAV swarm[J]. Ship Electronic Engineering, 2021, 41(5): 49-52, 82 (in Chinese). 王璨, 高辰子. 无人机集群通信网络拓扑重构及关键技术研究[J]. 舰船电子工程, 2021, 41(5): 49-52, 82.
[54] FU X W, WEI K, LI B, et al. Formation control method of UAV cluster based on alliance[J]. Systems Engineering and Electronics, 2019, 41(11): 2559-2572 (in Chinese). 符小卫, 魏可, 李斌, 等. 基于联盟的无人机集群编队控制方法[J]. 系统工程与电子技术, 2019, 41(11): 2559-2572.
[55] YANG J, XI J X, WANG C, et al. Summary of multi-UAV cooperative patrol task planning methods[J]. Flight Dynamics, 2018, 36(5): 1-6 (in Chinese). 杨杰, 席建祥, 王成, 等. 多无人机协同巡视任务规划方法综述[J]. 飞行力学, 2018, 36(5): 1-6.
[56] LI B. Research on the modeling and optimization method of mission planning for UAV swarm system[D]. Xi'an: Xidian University, 2020: 10-12. (in Chinese) 李博. 集群无人机系统任务规划建模与优化方法研究[D]. 西安: 西安电子科技大学, 2020: 10-12.
[57] JIA T, XU H H, YAN H T, et al. Decentralized multi-agent task planning for heterogeneous UAV swarm[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, 37(4): 528-538.
[58] WANG R R, WEI W L, YANG M C, et al. Task allocation of multiple UAVs considering cooperative route planning[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724234 (in Chinese). 王然然, 魏文领, 杨铭超, 等. 考虑协同航路规划的多无人机任务分配[J]. 航空学报, 2020, 41(S2): 724234.
Outlines

/