Hot jet interaction effect and its influence on aerodynamic characteristics and aero-thermal environment of aircraft is an important issue remaining to be solved in research on jet interaction. By solving three-dimensional chemical non-equilibrium Navier-Stokes equations, this paper analyzes the influence of afterburning effect and heterogeneous gas injection effect in the high-speed aircraft divert control system on aerodynamic characteristics and aero-thermal environment of the aircraft. The hot jet interaction effect on the aircraft with different flight velocity, flight alttude and angle of attack is also analyzed. The result shows that hot jet interaction effect has pronounced influence on the aerodynamic characteristics and aero-thermal environment of aircraft, mainly including afterburning effect and heterogeneous gas injection effect. In this paper's given conditions, hot jet interaction effect is dominated by afterburning effect, which can increase the thrust produced by jet interaction, produce an additional pitching up moment, and increase the heat flux in jet interference area. The higher the flight velocity, and the lower the flight altitude. The nozzle outlet on the windward side will enhance afterburning effect. Heterogeneous gas injection effect is enhanced when flight velocity is high and nozzle outlet is on windward side, but it is still insignificant compared with afterburning effect.
FU Yang'aoxiao
,
DING Mingsong
,
LIU Qingzong
,
JIANG Tao
,
SHI Run
,
DONG Weizhong
,
GAO Tiesuo
. Numerical study of hot jet interaction effect in divert control system[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022
, 43(9)
: 125941
-125941
.
DOI: 10.7527/S1000-6893.2021.25941
[1] CHEN B, ZHENG Y, CHEN Z L, et al. A review of celestial navigation system on near space hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 623686 (in Chinese). 陈冰, 郑勇, 陈张雷, 等. 临近空间高超声速飞行器天文导航系统综述[J]. 航空学报, 2020, 41(8): 623686.
[2] LAI J, ZHAO Z L, WANG X B, et al. Uniform pitching motion and angular rate effects on transverse jet interaction[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 122866 (in Chinese). 赖江, 赵忠良, 王晓冰, 等. 匀速俯仰运动及角速率对横向喷流的影响[J]. 航空学报, 2019, 40(10): 122866.
[3] GUAN Z S, RUAN W H, LIU W, et al. Study of trajectory-controlled thrust vector technology application in air defense missile[J]. Air & Space Defense, 2020, 3(2): 1-7 (in Chinese). 管再升, 阮文华, 刘伟, 等. 轨控推力矢量技术在防空导弹上的应用研究[J]. 空天防御, 2020, 3(2): 1-7.
[4] JIA Q, WEI M Y, GUO D Y. Orbital lateral thrust/aerodynamic force blended control methodin high altitude[J]. Modern Defence Technology, 2015, 43(6): 61-67 (in Chinese). 贾倩, 魏明英, 郭大勇. 高空轨控式直接侧向力/气动力复合控制方法[J]. 现代防御技术, 2015, 43(6): 61-67.
[5] VOTTA R, TRIFONI E, PEZZELLA G, et al. Numerical investigation of RCS jet interaction and plume impingement for Mars precision landing[C]//8th AIAA Theoretical Fluid Mechanics Conference. Reston: AIAA, 2017.
[6] DESPIRITO J. Turbulence model effects on cold-gas lateral jet interaction in a supersonic crossflow[C]//32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014.
[7] DESPIRITO J. Effects of turbulence model on prediction of hot-gas lateral jet interaction in a supersonic crossflow[C]//53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015.
[8] GNEMMI P, SEILER F. Interaction of a lateral jet with the projectile external flow[C]//Atmospheric Flight Mechanics Conference. Reston: AIAA, 2000.
[9] SUN D C, YANG J W, BAI R B. The effect of gas properties on the lateral jet interaction flowfield[J]. Acta Aerodynamica Sinica, 2010, 28(6): 720-723 (in Chinese). 孙得川, 杨建文, 白荣博. 喷流气体性质对导弹侧向喷流流场的影响[J]. 空气动力学学报, 2010, 28(6): 720-723.
[10] EBRAHIMI H. Numerical investigation of jet interaction in a supersonic freestream[C]//17th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2005.
[11] DONG H B, LIU J, CHEN Z D, et al. Numerical investigation of lateral jet with supersonic reacting flow[J]. Journal of Spacecraft and Rockets, 2018, 55(4): 928-935.
[12] DONG W Z. Numerical calculation and analysis of the effect of chemical nonequilibrium on hypersonic flow[D]. Beijing: Beihang University, 1996: 21-36 (in Chinese). 董维中. 热化学非平衡效应对高超声速流动影响的数值计算与分析[D]. 北京: 北京航空航天大学, 1996: 21-36.
[13] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[14] ZHAO H Y. Parallel numerical study of whole scramjet engine[D]. Mianyang: China Aerodynamics Research and Development Center Graduate School, 2005: 49-55 (in Chinese). 赵慧勇. 超燃冲压整体发动机并行数值研究[D]. 绵阳: 中国空气动力研究与发展中心研究生部, 2005: 49-55.
[15] DING M S, LIU Q Z, JIANG T, et al. Simulation of magnetohydrodynamic heat shield system on reusable launch vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124501 (in Chinese). 丁明松, 刘庆宗, 江涛, 等. 磁控热防护系统在天地往返运载器上的应用仿真[J]. 航空学报, 2021, 42(7): 124501.
[16] YANG Y G, LIU J, TANG Z G. A study of real gas effects on lateral jet interaction[J]. Acta Aerodynamica Sinica, 2006, 24(1): 28-33 (in Chinese). 杨彦广, 刘君, 唐志共. 横向喷流干扰中的真实气体效应研究[J]. 空气动力学学报, 2006, 24(1): 28-33.
[17] PARK C. Review of chemical-kinetic problems of future NASA missions. Ⅰ: Earth entries[J]. Journal of Thermophysics and Heat Transfer, 1993, 7(3): 385-398.
[18] SURZHIKOV S, SHANG J. Kinetic models analysis for super-orbital aerophysics[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
[19] PARK C, HOWE J T, JAFFE R L, et al. Review of chemical-kinetic problems of future NASA missions Ⅱ mars entries[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(1): 9-23.
[20] PARK C, JAFFE R, PARTRIDGE H. Chemical-kinetic parameters of hyperbolic Earth entry[C]//38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000.
[21] TONG T W, ABOU-ELLAIL M M, LI Y. Mathematical modeling of catalytic-surface combustion of reacting flows[J]. Journal of Thermophysics and Heat Transfer, 2007, 21(3): 512-519.
[22] KATTA V R, ROQUEMORE W M. Simulation of dynamic methane jet diffusion flames using finite rate chemistry models[J]. AIAA Journal, 1998, 36: 2044-2054.
[23] PAO S P, DEERE K, ABDOL-HAMID K. Establishing approaches to modeling the Ares Ⅰ-Ⅹ and Ares Ⅰ roll control system with free-stream interaction[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011.
[24] STAHL B, ESCH H, GVLHAN A. Experimental investigation of side jet interaction with a supersonic cross flow[J]. Aerospace Science and Technology, 2008, 12(4): 269-275.
[25] STAHL B, EMUNDS H, GüLHAN A. Experimental investigation of hot and cold side jet interaction with a supersonic cross-flow[J]. Aerospace Science and Technology, 2009, 13(8): 488-496.