Fluid Mechanics and Flight Mechanics

Mechanism and theoretical analysis of pressure ratio and entropy increase in a pre-swirl system of gas turbine engine

  • LIN Aqiang ,
  • LIU Gaowen ,
  • WU Heng ,
  • CHANG Ran ,
  • FENG Qing
Expand
  • 1. School of Power and Energy, Northwestern Polytechnical University, Xi 'an 710129, China;
    2. Shaanxi Key Laboratory of Thermal Science in Aero-engine System, Northwestern Polytechnical University, Xi 'an 710072, China;
    3. ENN Energy Power Technology (Shanghai) Co., LTD, Shanghai 200241, China

Received date: 2021-06-03

  Revised date: 2021-06-30

  Online published: 2021-09-06

Supported by

National Science and Technology Major Project of China (2017-Ⅲ-0011-0037); Fundamental Research Funds for the Central Universities (3102021OQD701)

Abstract

The pre-swirl system has the complex problem of power and heat conversion of rotating and stationary components, and can provide important guarantee for high-temperature thermal protection of turbine rotating blade. Theoretical analysis of the correlation mechanism and evolution law of pressure ratio, entropy increase, and temperature drop of the pre-swirl system is conducted in this paper. A mathematical model of pressure ratio efficiency is proposed. The influence mechanism of the impeller effect of rotating component is comprehensively evaluated. It is found that under the condition of adiabatic constant specific heat, the pressure ratio and entropy increase of the station system decreases monotonously with the increase of air supply flow rate. The pressure ratio-entropy increase characteristic of rotor system depends on the effect of air supply flow rate, rotational speed of turbine disc, and system temperature drop. By decomposing the mechanism of temperature drop into a strong correlation function between the velocity coefficient and the rotating Mach number, it is clearly pointed out that the system pressure ratio decreases with the increase of the air supply flow rate, and basically increases with the increase of the turbine disc rotational speed. When the airflow swirl ratio of pre-swirl nozzle is greater than the reciprocal of pre-swirl radius ratio, the system pressure ratio decreases with the increase of turbine disc rotational speed. It can be revealed that the decrease of entropy loss is an important way to improve the system pressure ratio when the inlet flow condition and the pre-swirl radius ratio are constant. By systematically evaluating the impeller effect of rotor component, it is found that the impeller can increase the nozzle outlet velocity coefficient, increase the system temperature drop, and reduce the system power consumption without changing the rotating Mach number and keeping the system pressure ratio unchanged. Therefore, the correlation mechanism of pressure ratio and entropy increase characteristics can effectively evaluate the design of pre-swirl system.

Cite this article

LIN Aqiang , LIU Gaowen , WU Heng , CHANG Ran , FENG Qing . Mechanism and theoretical analysis of pressure ratio and entropy increase in a pre-swirl system of gas turbine engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(9) : 125907 -125907 . DOI: 10.7527/S1000-6893.2021.25907

References

[1] YANG J J, ZHENG X M, YANG X Y. Load scatter factors affecting aero engine structure life[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524339 (in Chinese). 杨俊杰, 郑小梅, 杨兴宇. 影响航空发动机结构寿命的载荷分散系数[J]. 航空学报, 2021, 42(5): 524339.
[2] LI J, LI Z Y, LI Z G, et al. Aerothermal performance of high pressure turbine stage with combustor-turbine interactions: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 024111 (in Chinese). 李军, 栗智宇, 李志刚, 等. 燃烧室和涡轮相互作用下高压涡轮级气热性能研究进展[J]. 航空学报, 2021, 42(3): 024111.
[3] WEI H Y, XU M, LIU X X. Development and key technologies of turbine blade cooling technology[J]. Aerodynamic Missile Journal, 2012(2): 61-64 (in Chinese). 卫海洋, 徐敏, 刘晓曦. 涡轮叶片冷却技术的发展及关键技术[J]. 飞航导弹, 2012(2): 61-64.
[4] ZHAO C W, MAO J K, TU Z C, et al. Thermal analysis methods for high-temperature ceramic matrix composite components: review and prospect[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 024126 (in Chinese). 赵陈伟, 毛军逵, 屠泽灿, 等. 纤维增韧陶瓷基复合材料热端部件的热分析方法现状和展望[J]. 航空学报, 2021, 42(6): 024126.
[5] LIN A Q, LIU G W, WANG X X, et al. Comprehensive evaluations on performance and energy consumption of pre-swirl rotor-stator system in gas turbine engines[J]. Energy Conversion and Management, 2021, 244: 114440.
[6] LIU S L, TAO Z. Heat transfer and secondary air system of gas turbine engine[M]. Shanghai: Shanghai Jiao Tong University Press, 2018: 727-735 (in Chinese). 刘松龄, 陶智. 燃气涡轮发动机的传热和空气系统[M]. 上海: 上海交通大学出版社, 2018: 727-735.
[7] LIN L. Research on the mechanism of flow and heat transfer in rotor-stator cavities in gas turbine[D]. Beijing: Tsinghua University, 2013: 26-39 (in Chinese). 林立. 燃气轮机转静系盘腔内流动与传热机理研究[D]. 北京: 清华大学, 2013: 26-39.
[8] MEIERHOFER B, FRANKLIN C J. An investigation of a preswirled cooling airflow to a turbine disc by measuring the air temperature in the rotating channels: 81-GT-132[R]. New York: ASME, 1981.
[9] SMOUT P D, CHEW J W, CHILDS P R N. ICAS-GT: A European collaborative research programme on internal cooling air systems for gas turbines[C]//Proceedings of ASME Turbo Expo 2002: Power for Land, Sea, and Air. New York: ASME, 2002: 907-914.
[10] CHILDS P, DULLENKOPF K, BOHN D. Internal air systems experimental rig best practice[C]//Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air. New York: ASME, 2006: 1333-1343.
[11] EL-OUN Z B, OWEN J M. Preswirl blade-cooling effectiveness in an adiabatic rotor-stator system[J]. Journal of Turbomachinery, 1989, 111(4): 522-529.
[12] ALEXIOU A, MATHIOUDAKIS K. Secondary air system component modeling for engine performance simulations: GT 2008-50771[R]. New York: ASME, 2008.
[13] LIU G W, LI B Y, JIANG Z W, et al. Effects of pre-swirl angle on flow characteristics of pre-swirl nozzle[J]. Journal of Propulsion Technology, 2012, 33(5): 740-746 (in Chinese). 刘高文, 李碧云, 蒋兆午, 等. 预旋角度对预旋孔流动特性的影响[J]. 推进技术, 2012, 33(5): 740-746.
[14] LIU G W, ZHANG L, WU W T, et al. Numerical simulations on the flow characteristics of the pre-swirl nozzles with different length-to-diameter ratios[J]. Journal of Propulsion Technology, 2013, 34(5): 644-650 (in Chinese). 刘高文, 张林, 务卫涛, 等. 长径比对预旋孔流动特性影响的数值研究[J]. 推进技术, 2013, 34(5): 644-650.
[15] ZHANG F, WANG X J, LI J. Numerical investigation on the flow and heat transfer characteristics in radial pre-swirl system with different fillet radius at the junction of inlet cavity and nozzle[J]. Applied Thermal Engineering, 2016, 106: 1165-1175.
[16] CHEN Y, FENG Q. The investigation of the discharge coefficient measurement of different geometrical structural pre-swirl nozzle[J]. Science Technology and Engineering, 2012, 12(11): 2637-2641 (in Chinese). 陈尧, 冯青. 异形预旋喷嘴流量系数的测量研究[J]. 科学技术与工程, 2012, 12(11): 2637-2641.
[17] LIU Y X, LIU G W, XU Q, et al. Effects of non-dimensional blade height on flow characteristics of cascade vane preswirl nozzle[J]. Journal of Propulsion Technology, 2015, 36(3): 392-398 (in Chinese). 刘育心, 刘高文, 徐权, 等. 无量纲叶高对叶型喷嘴流动特性的影响[J]. 推进技术, 2015, 36(3): 392-398.
[18] LIU Y X, LIU G W, WU H, et al. Numerical investigation on flow characteristics of a vane shaped hole preswirl nozzle[J]. Journal of Propulsion Technology, 2016, 37(2): 332-338 (in Chinese). 刘育心, 刘高文, 吴衡, 等. 叶型孔式预旋喷嘴流动特性数值研究[J]. 推进技术, 2016, 37(2): 332-338.
[19] HU W X, WANG S F, MAO S S. Numerical study on influence of pre-swirl nozzle radial angles on pre-swirl characteristic[J]. Journal of Aerospace Power, 2019, 34(1): 84-91 (in Chinese). 胡伟学, 王锁芳, 毛莎莎. 预旋喷嘴径向角度对预旋特性影响的数值研究[J]. 航空动力学报, 2019, 34(1): 84-91.
[20] TANG G Q, XUE W P, ZENG J, et al. Design and study of low loss integrated pre-swirl nozzle[J]. Journal of Propulsion Technology, 2020, 41(9): 2011-2020 (in Chinese). 唐国庆, 薛伟鹏, 曾军, 等. 低损失融合式预旋喷嘴设计与研究[J]. 推进技术, 2020, 41(9): 2011-2020.
[21] LEI Z, LIU G W, GU W, et al. Numerical simulation of effects of partial nozzle closure on uniformity of parameters in pre-swirl air supply system[J]. Journal of Aerospace Power, 2020, 35(5): 963-972 (in Chinese). 雷昭, 刘高文, 顾伟, 等. 部分喷嘴关闭对预旋供气系统参数均匀性影响的计算[J]. 航空动力学报, 2020, 35(5): 963-972.
[22] BRICAUD C, GEIS T, DULLENKOPF K, et al. Measurement and analysis of aerodynamic and thermodynamic losses in pre-swirl system arrangements[C]//Proceedings of ASME Turbo Expo 2007: Power for Land, Sea, and Air. New York: ASME, 2007: 1115-1126.
[23] MIRZAMOGHADAM A V, RIAHI A, MORRIS M C. High pressure turbine low radius radial TOBI discharge coefficient validation process[J]. Journal of Fluids Engineering, 2013, 135(7): 071103.
[24] JAVIYA U, CHEW J, HILLS N, et al. A comparative study of cascade vanes and drilled nozzle design for pre-swirl[C]//Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. New York: ASME, 2011: 913-920.
[25] CHAI J S, YANG Y S. Calculation methods of pre-swirl nozzle based on cascade vanes[J]. Aeroengine, 2013, 39(2): 66-69, 83 (in Chinese). 柴军生, 杨燕生. 基于叶栅型预旋喷嘴的计算方法[J]. 航空发动机, 2013, 39(2): 66-69, 83.
[26] LIU Y X, LIU G W, KONG X Z, et al. Design and numerical analysis of a vane shaped receiver hole in a cover-plate preswirl system[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(4): 041001.
[27] XUE B. Investigations on the temperature drop and pressure loss of a new preswirl system[D]. Xi 'an: Northwestern Polytechnical University, 2011 (in Chinese). 薛彪. 新型预旋供气系统温降和阻力特性研究[D]. 西安: 西北工业大学, 2011.
[28] CHEN Y. The investigation of the discharge coefficient and the flow field measurement of pre-swirl nozzles with special geometry[D]. Xi 'an: Northwestern Polytechnical University, 2012 (in Chinese). 陈尧. 异形预旋喷嘴的流量系数和流场的测量研究[D]. 西安: 西北工业大学, 2012.
[29] POPP O, ZIMMERMANN H, KUTZ J. CFD analysis of coverplate receiver flow[J]. Journal of Turbomachinery, 1998, 120(1): 43-49.
[30] DITTMANN M, GEIS T, SCHRAMM V, et al. Discharge coefficients of a preswirl system in secondary air systems[J]. Journal of Turbomachinery, 2002, 124(1): 119-124.
[31] DITTMANN M, DULLENKOPF K, WITTIG S. Discharge coefficients of rotating short orifices with radiused and chamfered inlets[J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(4): 803-808.
[32] YAN Y Y, GORD M F, LOCK G D, et al. Fluid dynamics of a pre-swirl rotor-stator system[J]. Journal of Turbomachinery, 2003, 125(4): 641-647.
[33] FENG Q, BU Q L, LIU S L. Similarity analysis and numerical simulation of the flow field in a rotating disk system with rotating pre-swirl nozzle[J]. Journal of Northwestern Polytechnical University, 2003, 21(2): 239-243 (in Chinese). 冯青, 卜其龙, 刘松龄. 动盘带预旋喷嘴的旋转盘腔内流场的相似分析与数值模拟[J]. 西北工业大学学报, 2003, 21(2): 239-243.
[34] FENG Q, ZHOU B, LIU S L. Similarity analysis and numerical solution of N-S equations for laminar flow in a rotor-stator system[J]. Journal of Aerospace Power, 1994, 9(4): 366-370 (in Chinese). 冯青, 周彬, 刘松龄. 转盘-静盘腔内层流流动的相似分析及其N-S方程数值解[J]. 航空动力学报, 1994, 9(4): 366-370.
[35] WANG S F, ZHU Q H, LUAN H F, et al. Experimental study on heat transfer in rotor-stator cavity with high-positioned pre-swirl inflow[J]. Journal of Aerospace Power, 2007, 22(8): 1216-1221 (in Chinese). 王锁芳, 朱强华, 栾海峰, 等. 高位预旋进气转静盘腔换热实验[J]. 航空动力学报, 2007, 22(8): 1216-1221.
[36] WU H, FENG Q, LIU G W, et al. Entropy analysis of a cover-plate pre-swirl system[J]. Journal of Propulsion Technology, 2016, 37(11): 2048-2054 (in Chinese). 吴衡, 冯青, 刘高文, 等. 熵分析法在盖板式预旋系统分析中的应用[J]. 推进技术, 2016, 37(11): 2048-2054.
[37] WU H. Numerical research on the power consumption and temperature drop of a pre-swirl system[D]. Xi 'an: Northwestern Polytechnical University, 2016 (in Chinese). 吴衡. 预旋系统温降及功耗特性的数值研究[D]. 西安: 西北工业大学, 2016.
[38] GONG W B, LIU G W, FENG Q, et al. Flow rate and entropy generation model of typical flow resistance elements[J]. Journal of Propulsion Technology, 2021, 42(8): 1807-1814 (in Chinese). 龚文彬, 刘高文, 冯青, 等. 典型流阻元件的流量和熵产模型研究[J]. 推进技术, 2021, 42(8): 1807-1814.
[39] DING S T, DENG C C, QIU T. Sensibility analysis of heat transfer characteristics to dimensionless criterion in central inlet rotating disk cavity[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 123017 (in Chinese). 丁水汀, 邓长春, 邱天. 中心进气旋转盘腔换热特性对无量纲参数的敏感性分析[J]. 航空学报, 2019, 40(12): 123017.
[40] LIU G W, WANG X X, GONG W B, et al. Prediction of the sealing flow effect on the temperature drop characteristics of a pre-swirl system in an aero-engine[J]. Applied Thermal Engineering, 2021, 189: 116717.
[41] LIU G W, GONG W B, WU H, et al. Experimental and CFD analysis on the pressure ratio and entropy increment in a cover-plate pre-swirl system of gas turbine engine[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 476-489.
[42] LIU G W, GONG W B, WU H, et al. Theoretical and experimental evaluation of temperature drop and power consumption in a cover-plate pre-swirl system for gas turbine cooling[J]. Case Studies in Thermal Engineering, 2021, 27: 101221.
[43] LEI Z, LIU G W. Numerical analysis of air supply parameters and non-uniform characteristics in a cover-plate pre-swirl system with the adjustable flow path[J]. International Journal of Energy Research, 2021, 45(6): 8763-8779.
[44] LIN A Q, ZHAO Y Z, WANG J S, et al. Mechanism and theoretical analysis of temperature drop and power consumption in a pre-swirl system of gas turbine engine[J]. Proceedings of the Chinese Society of Electrical Engineering, 2022, 42(11): 4090-4102 (in Chinese). 林阿强, 赵义祯, 王俊凇, 等. 燃气涡轮发动机预旋系统温降和功耗的作用机制与理论分析[J]. 中国电机工程学报, 2022, 42(11): 4090-4102.
[45] XIE L, DU Q, LIU G, et al. Flow characteristics in turbine wheel space cavity[J]. Energy Reports, 2021, 7: 2262-2275.
[46] Rolls-Royce PLC. The jet engine[M]. London: Rolls Royce Technical Publication, 1996.
[47] KARABAY H, CHEN J X, PILBROW R, et al. Flow in a "cover-plate" preswirl rotor-stator system[J]. Journal of Turbomachinery, 1999, 121(1): 160-166.
[48] GONG W B, LIU G W, WANG F, et al. Experimental study on the influence of vane-shaped receiver holes on flow and temperature drop of a high-radius pre-swirl air supply system[J]. Journal of Xi 'an Jiaotong University, 2021, 55(7): 97-105 (in Chinese). 龚文彬, 刘高文, 王斐, 等. 叶型接受孔对高位预旋供气系统流动温降影响的实验研究[J]. 西安交通大学学报, 2021, 55(7): 97-105.
[49] LEWIS P, WILSON M, LOCK G, et al. Effect of radial location of nozzles on performance of pre-swirl systems[C]//Proceedings of ASME Turbo Expo 2008: Power for Land, Sea, and Air. New York: ASME, 2008: 1397-1406.
[50] KAKADE V U, LOCK G D, WILSON M, et al. Effect of radial location of nozzles on heat transfer in preswirl cooling systems[J]. Journal of Turbomachinery, 2011, 133(2): 021023.
[51] WU C, VAISMAN B, MCCUSKER K. CFD analyses of HPT blade air delivery system with and without impellers[C]//Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. New York: ASME, 2011: 883-892.
[52] TIAN S Q, ZHANG Q, LIU H. CFD investigation of vane nozzle and impeller design for HPT blade cooling air delivery system: GT2013-95396[R]. New York: ASME, 2013.
[53] GUPTA A K, RAMERTH D, RAMACHANDRAN D. Numerical simulation of TOBI flow: Analysis of the cavity between a seal-plate and HPT disc with pumping vanes[C]//Proceedings of ASME Turbo Expo 2008: Power for Land, Sea, and Air. New York: ASME, 2008: 1571-1578.
[54] LIU G W, WU H, FENG Q, et al. Theoretical and numerical analysis on the temperature drop and power consumption of a pre-swirl system: GT2016-56742[R]. New York: ASME, 2016.
Outlines

/