ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Two-stage strong tracking differential Kalman filter for X-ray pulsar navigation with coloured noise
Received date: 2021-07-15
Revised date: 2021-07-29
Accepted date: 2021-08-05
Online published: 2021-08-25
To improve the robustness of X-ray pulsar navigation to colored noise and ephemeris errors, a Two-stage Strong Tracking Differential Kalman Filter (TSTDKF) is designed. First, based on an analysis of the navigation principle, the error transfer relationship of the ephemeris error of central celestial body to the navigation result is analyzed, and the Extended Kalman Filter (EKF) is used for simulation verification. On the same orbit, the gravitational perturbation data of the third celestial body is analyzed using the gravitational perturbation model, which proves that the noise is colored noise. Based on the above conclusions, a bias-free filter of ordinary Two-stage Kalman Filter (TKF) is designed as an improved differential filter to reduce the impact of colored noise on the navigation system. In TSTDKF’s separate bias filter, multiple adaptive adjustment factors are constructed based on observation residuals to enhance its tracking performance. The two filters together form the two parallel filters of TSTDKF. Simulation experiments prove that the positioning performance of TSTDKF is 56.49% and 35.18% better than that of EKF and TKF, respectively, and the velocity of TSTDKF is also 27.66% and 17.07% better than that of EKF and TKF, respectively. Its tracking accuracy of ephemeris error is also overall better than that of TKF.
Qiang XU , Hongliang CUI , Bangping DING , Aigang ZHAO , Yang ZHAO . Two-stage strong tracking differential Kalman filter for X-ray pulsar navigation with coloured noise[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(3) : 526120 -526120 . DOI: 10.7527/S1000-6893.2021.26120
1 | HEWISH A, BELL S J, PILKINGTON J D H, et al. Observation of a rapidly pulsating radio source[J]. Nature, 1968, 217(5130): 709-713. |
2 | LIU J, MA J, TIAN J W, et al. Pulsar navigation for interplanetary missions using CV model and ASUKF[J]. Aerospace Science and Technology, 2012, 22(1): 19-23. |
3 | FENG D Z, GUO H H, WANG X, et al. Autonomous orbit determination and its error analysis for deep space using X-ray pulsar[J]. Aerospace Science and Technology, 2014, 32(1): 35-41. |
4 | 李敏, 张迎春, 耿云海, 等. 鲁棒EKF在脉冲星导航系统中的应用[J]. 航空学报, 2016, 37(4): 1305-1315. |
LI M, ZHANG Y C, GENG Y H, et al. A robust extended Kalman filter algorithm for X-ray pulsar navigation system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4): 1305-1315 (in Chinese). | |
5 | SHEIKH S I. The use of variable celestial X-ray sources for spacecraft navigation[D]. Cambridge: Harvard University, 2005: 3817. |
6 | XU Q, WANG H L, YOU S H, et al. Impact of ephemeris errors on X-ray pulsar navigation[C]∥2018 IEEE CSAA Guidance, Navigation and Control Conference. Piscataway: IEEE Press, 2018: 1-6. |
7 | WANG Y D, ZHENG W, SUN S M, et al. X-ray pulsar-based navigation system with the errors in the planetary ephemerides for Earth-orbiting satellite[J]. Advances in Space Research, 2013, 51(12): 2394-2404. |
8 | LIU J, FANG J C, YANG Z H, et al. X-ray pulsar/Doppler difference integrated navigation for deep space exploration with unstable solar spectrum[J]. Aerospace Science and Technology, 2015, 41: 144-150. |
9 | NING X L, GUI M Z, FANG J C, et al. Differential X-ray pulsar aided celestial navigation for Mars exploration[J]. Aerospace Science and Technology, 2017, 62: 36-45. |
10 | XUE M F, SHI Y F, GUO Y F, et al. X-ray pulsar-based navigation considering spacecraft orbital motion and systematic biases[J]. Sensors, 2019, 19(8): 1877. |
11 | XU Q, FAN X H, ZHAO A G, et al. Pre-correction X-ray pulsar navigation algorithm based on asynchronous overlapping observation method[J]. Advances in Space Research, 2021, 67(1): 583-596. |
12 | FOLKNER W M, WILLIAMS J G, BOGGS D H. The planetary and lunar ephemeris DE 421: IOM 343R-08-003[R]. Pasadena: California Institute of Technology, 2009. |
13 | FOLKNER W, WILLIAMS J, BOGGS D, et al. The planetary and lunar ephemerides DE430 and DE431: IPN Progress Report 42-196[R]. Pasadena: California Institute of Technology, 2014. |
14 | WANG Y D, ZHENG W, SUN S M, et al. X-ray pulsar-based navigation using time-differenced measurement[J]. Aerospace Science and Technology, 2014, 36: 27-35. |
15 | GUI M Z, NING X L, MA X, et al. A novel celestial aided time-differenced pulsar navigation method against ephemeris error of Jupiter for Jupiter exploration[J]. IEEE Sensors Journal, 2019, 19(3): 1127-1134. |
16 | WANG S, CUI P Y, GAO A, et al. Absolute navigation for Mars final approach using relative measurements of X-ray pulsars and Mars orbiter[J]. Acta Astronautica, 2017, 138: 68-78. |
17 | MIGNARD F, KLIONER S A, LINDEGREN L, et al. gaia data release 2: The celestial reference frame (Gaia-CRF2) [DB/OL]. arXiv preprint: 1804.09377, 2018. |
18 | SHEIKH S I, PINES D J, RAY P S, et al. Spacecraft navigation using X-ray pulsars[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(1): 49-63. |
19 | XU Q, WANG H L, FENG L, et al. An improved augmented X-ray pulsar navigation algorithm based on the norm of pulsar direction error[J]. Advances in Space Research, 2018, 62(11): 3187-3198. |
20 | 孙守明. 基于X射线脉冲星的航天器自主导航方法研究[D]. 长沙: 国防科学技术大学, 2011: 162. |
SUN S M. Study on autonomous navigation method of spacecraft based on X-ray pulsars[D]. Changsha: National University of Defense Technology, 2011: 162. (in Chinese) | |
21 | MCCARTHY D D, PETIT G. IERS conventions (2003)[M]. Frankfurt am Main: Verlag des Bundesamtes für Kartographie und Geod?sie, 2004: 127. |
22 | PETIT G, LUZUM B. The IERS Conventions ( 2010 )[J]. Geophysical Research Abstracts, 2011, 13(2010): 12214. |
23 | 邓雪梅, 樊敏, 谢懿. JPL行星历表的比较及评估[J]. 天文学报, 2013, 54(6): 550-561. |
DENG X M, FAN M, XIE Y. Comparisons and evaluations of JPL ephemerides[J]. Acta Astronomica Sinica, 2013, 54(6): 550-561 (in Chinese). | |
24 | JOHNSON T J, GUILLEMOT L, KERR M, et al. Broadband pulsations from PSR B1821-24: Implications for emission models and the pulsar population of M28[J]. The Astrophysical Journal Letters, 2013, 778(2): 106. |
25 | MANCHESTER R N, HOBBS G B, TEOH A, et al. The Australia telescope national facility pulsar catalogue[J]. The Astronomical Journal, 2005, 129(4): 1993-2006. |
26 | FRIEDLAND B. Treatment of bias in recursive filtering[J]. IEEE Transactions on Automatic Control, 1969, 14(4): 359-367. |
27 | HSIEH C S, CHEN F C. General two-stage Kalman filters[J]. IEEE Transactions on Automatic Control, 2000, 45(4): 819-824. |
28 | 林旭, 刘俊钊. 有色噪声下的目标跟踪卡尔曼滤波新算法[J]. 中国惯性技术学报, 2018, 26(6): 830-834. |
LIN X, LIU J Z. New Kalman filtering algorithm for target tracking with colored noise[J]. Journal of Chinese Inertial Technology, 2018, 26(6): 830-834 (in Chinese). | |
29 | 赵长胜, 陶本藻. 有色噪声作用下的抗差卡尔曼滤波[J]. 武汉大学学报·信息科学版, 2007, 32(10): 880-882. |
ZHAO C S, TAO B Z. Robust Kalman filtering of linear system with colored noises[J]. Geomatics and Information Science of Wuhan University, 2007, 32(10): 880-882 (in Chinese). | |
30 | 许强, 范小虎, 徐利国, 等. 脉冲星方位误差估计的TSKF算法[J]. 北京航空航天大学学报, 2020, 46(4): 761-768. |
XU Q, FAN X H, XU L G, et al. TSKF algorithm for pulsar position error estimation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 761-768 (in Chinese). |
/
〈 |
|
〉 |