Material Engineering and Mechanical Manufacturing

Quantitative analysis method for electromagnetic ultrasonic SH guided wave detection of aerospace stainless steel sheet

  • WU Rui ,
  • SHI Wenze ,
  • LU Chao ,
  • LI Qiufeng ,
  • CHEN Guo
Expand
  • 1. Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China;
    2. State Key Laboratory of Acoustic Field and Acoustic Information, Academy of Acoustics, Chinese Academy of Sciences, Beijing 100190, China;
    3. Key Laboratory of Simulation and Numerical Modeling Technology of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China

Received date: 2021-05-31

  Revised date: 2021-06-18

  Online published: 2021-08-25

Supported by

National Natural Science Foundation of China (12064001, 52065049, 51705231); Natural Science Foundation of Jiangxi Province (20192ACBL20052); Science and Technology Innovation Platform of Jiangxi Province (20204BCJL22039, 20192BCD40028); Natural Science Fund Project in Jiangxi Province (20181BAB216020); Graduate Innovation Fund Project of Nanchang Hangkong University (YC2020057)

Abstract

The Shear Horizontal (SH) wave Electromagnetic Ultrasonic Transducer (EMAT) has the advantages of non-contact, no coupling agent, insensitivity to surface oil coating, single point excitation and wide range detection. It has important technical advantages in rapid guided wave detection of aviation stainless steel sheet. A finite element model of SH guided wave propagation in stainless steel sheet with defects is established. The Distance Amplitude Curve (DAC) of the defects corresponding to different design parameters of EMAT is analyzed, and the DAC was verified by experiments. A finite element model for the acoustic field analysis of SH guided waves in stainless steel plates is established. The effects of the width, length and logarithm of the Permanent Magnet in Periodic-Permanent-Magnet Electromagnetic Acoustic Transducer (PPM EMAT) on the acoustic field characteristics of SH guided waves are studied. The axial sound pressure distribution of EMAT is obtained. On this basis, the optimal design parameter combination of EMAT is obtained. The results show that increasing the length and logarithm of permanent magnet can improve axial radiation acoustic field intensity of the EMAT, which makes the EMAT have good uniformity of sound pressure distribution in remote detection. When the number, length and width of permanent magnet are 6 pairs, 25 mm and 7 mm respectively, the corresponding EMAT has higher axial radiation acoustic field intensity and more stable DAC, and is more suitable for long-distance rapid guided wave detection of aviation stainless steel sheet.

Cite this article

WU Rui , SHI Wenze , LU Chao , LI Qiufeng , CHEN Guo . Quantitative analysis method for electromagnetic ultrasonic SH guided wave detection of aerospace stainless steel sheet[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(9) : 425888 -425888 . DOI: 10.7527/S1000-6893.2021.25888

References

[1] GU X P, LIU J, XU G C, et al. Ultrasonic testing and evaluation of laser welds in stainless steel[J]. Lasers in Engineering, 2014, 26(1-2): 103-113.
[2] TANG M J, LI J Y, YU X, et al. Tensile behavior of stainless steel clad plates with different cladding ratios[J]. Journal of Constructional Steel Research, 2021, 182: 106641.
[3] MA B Q, ZHOU Z G. Progress and development trends of composite structure evaluation using noncontact nondestructive testing techniques in aviation and aerospace industries[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1787-1803 (in Chinese). 马保全, 周正干. 航空航天复合材料结构非接触无损检测技术的进展及发展趋势[J]. 航空学报, 2014, 35(7): 1787-1803.
[4] LIU Z H, XIE M W, ZHONG X W, et al. Research progress of electromagnetic acoustic transducers for ultrasonic guided waves inspection[J]. Journal of Beijing University of Technology, 2017, 43(2): 192-202 (in Chinese). 刘增华, 谢穆文, 钟栩文, 等. 超声导波电磁声换能器的研究进展[J]. 北京工业大学学报, 2017, 43(2): 192-202.
[5] ZHOU Z G, FENG Z Y, GAO Y F, et al. Application of ultrasonic guided waves to defect inspection of large thin aluminum plate[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 1044-1048 (in Chinese). 周正干, 冯占英, 高翌飞, 等. 超声导波在大型薄铝板缺陷检测中的应用[J]. 航空学报, 2008, 29(4): 1044-1048.
[6] HE J J, HUO H D, GUAN X F, et al. A Lamb wave quantification model for inclined cracks with experimental validation[J]. Chinese Journal of Aeronautics, 2021, 34(2): 601-611.
[7] VÁZQUEZ S, GOSÁLBEZ J, BOSCH I, et al. Comparative study of coupling techniques in lamb wave testing of metallic and cementitious plates[J]. Sensors (Basel, Switzerland), 2019, 19(19): 4068.
[8] JIAO J P, LI Y Q, DU L, et al. Study on the compound imaging method for crack detection in plate structure using array of Lamb waves[J]. Chinese Journal of Scientific Instrument, 2016, 37(3): 593-601 (in Chinese). 焦敬品, 李勇强, 杜礼, 等. 板结构裂纹兰姆波阵列复合成像方法研究[J]. 仪器仪表学报, 2016, 37(3): 593-601.
[9] CHEN C D, CHIU Y C, HUANG Y H, et al. Assessments of structural health monitoring for fatigue cracks in metallic structures by using lamb waves driven by piezoelectric transducers[J]. Journal of Aerospace Engineering, 2021, 34(1): 04020091.
[10] LIN W, WANG J Q. Study on relationship between the Lamb wave velocity and the fatigue of plate[J]. Acta Acustica, 2011, 36(2): 156-159 (in Chinese). 林玮, 王佳麒. 兰姆波各模式声速与板材疲劳关系研究[J]. 声学学报, 2011, 36(2): 156-159.
[11] LIU T H, PEI C X, CAI R, et al. A flexible and noncontact guided-wave transducer based on coils-only EMAT for pipe inspection[J]. Sensors and Actuators A: Physical, 2020, 314: 112213.
[12] ZHANG Z G, QUE P W, LEI H M. The magnetostrictive generation of lamb wave by electromagnetic acoustic transducer and its characters[J]. Journal of Shanghai Jiao Tong University, 2006, 40(1): 133-137 (in Chinese). 张志钢, 阙沛文, 雷华明. 兰姆波的电磁超声磁致伸缩式激励及其特性[J]. 上海交通大学学报, 2006, 40(1): 133-137.
[13] ROUGE C, LHÉMERY A, SÉGUR D. Modal solutions for SH guided waves radiated by an EMAT in a ferromagnetic plate[J]. Journal of Physics: Conference Series, 2012, 353: 012014.
[14] ZHANG L L, LIU X L, LIU J X. Propagation characteristics of sh guided waves in a piezoelectric nanoplate[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 503-511 (in Chinese). 张乐乐, 刘响林, 刘金喜. 压电纳米板中SH型导波的传播特性[J]. 力学学报, 2019, 51(2): 503-511.
[15] LI F X, MIAO H C. Development of an apparent face-shear mode (d36) piezoelectric transducer for excitation and reception of shear horizontal waves via two-dimensional antiparallel poling[J]. Journal of Applied Physics, 2016, 120(14): 144101.
[16] MIAO H C, DONG S X, LI F X. Excitation of fundamental shear horizontal wave by using face-shear (d36) piezoelectric ceramics[J]. Journal of Applied Physics, 2016, 119(17): 174101.
[17] ZHENG Y, ZHOU J J, ZHANG Z J, et al. Research on frequency adaptive optimization method of electromagnetic acoustic testing[J]. Journal of Mechanical Engineering, 2019, 55(14): 11-18 (in Chinese). 郑阳, 周进节, 张宗健, 等. 电磁超声检测频率自适应优化方法研究[J]. 机械工程学报, 2019, 55(14): 11-18.
[18] LI S S, CHEN X M, LI X. Study on dispersion characteristics of ultrasonic guided wave[J]. Applied Mechanics and Materials, 2013, 333-335: 1713-1718.
[19] YANG L J, XING Y H, ZHANG J, et al. Crack defect detection of aluminum plate based on electromagnetic ultrasonic guided wave[J]. Chinese Journal of Scientific Instrument, 2018, 39(4): 150-160 (in Chinese). 杨理践, 邢燕好, 张佳, 等. 基于电磁超声导波的铝板裂纹缺陷检测方法[J]. 仪器仪表学报, 2018, 39(4): 150-160.
[20] KIM D K, LEE J K, SEUNG H M, et al. Omnidirectional shear horizontal wave based tomography for damage detection in a metallic plate with the compensation for the transfer functions of transducer[J]. Ultrasonics, 2018, 88: 72-83.
[21] HUANG F Y, ZHOU Z G. Effect of static bias magnetic field on electromagnetic acoustic transducer sensitivity[J]. Journal of Mechanical Engineering, 2011, 47(10): 1-7 (in Chinese). 黄凤英, 周正干. 静态偏置磁场对电磁超声换能器灵敏度的影响[J]. 机械工程学报, 2011, 47(10): 1-7.
[22] SUN F R, SUN Z G, ZHANG W Z, et al. Review of modeling method and optimum design of EMAT transmitters based on Lorentz principle[J]. Journal of Mechanical Engineering, 2016, 52(6): 12-21 (in Chinese). 孙斐然, 孙振国, 张文增, 等. 基于洛伦兹力机制的电磁超声发射换能器的建模与优化[J]. 机械工程学报, 2016, 52(6): 12-21.
[23] SHI Y, SHI W Z, CHEN G, et al. Optimized design of surface wave electromagnetic acoustic transducer for rail tread testing[J]. Chinese Journal of Scientific Instrument, 2018, 39(8): 239-249 (in Chinese). 时亚, 石文泽, 陈果, 等. 钢轨踏面检测电磁超声表面波换能器优化设计[J]. 仪器仪表学报, 2018, 39(8): 239-249.
[24] PEI C X, ZHAO S Q, XIAO P, et al. A modified meander-line-coil EMAT design for signal amplitude enhancement[J]. Sensors and Actuators A: Physical, 2016, 247: 539-546.
[25] SUN H Y, PENG L S, HUANG S L, et al. Analytical model and optimal focal position selection for oblique point-focusing shear horizontal guided wave EMAT[J]. Construction and Building Materials, 2020, 258: 120375.
[26] SHI W Z, CHENG J J, HU S Z, et al. Application of pulse compression in electromagnetic ultrasonic guided wave detection of Aluminum sheet[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 425063 (in Chinese). 石文泽, 程进杰, 胡硕臻, 等. 脉冲压缩在铝薄板电磁超声导波检测中的应用[J]. 航空学报, 2022, 43(3): 425063.
[27] LIU S Z, WEI J, ZHANG C, et al. Adaptive filtering and feature extraction of ultrasonic signal based on FPGA[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2870-2878 (in Chinese). 刘素贞, 魏建, 张闯, 等. 基于FPGA的超声信号自适应滤波与特征提取[J]. 电工技术学报, 2020, 35(13): 2870-2878.
[28] OHTSUKA Y, NAKAMURA N, NISHIKAWA M. Multi-path method by using shear horizontal wave for defect size detection[J]. Przeglad Elektrotechniczny, 2007, 83(11): 191-193.
[29] LI W B, CHO Y. Quantification and imaging of corrosion wall thinning using shear horizontal guided waves generated by magnetostrictive sensors[J]. Sensors and Actuators A: Physical, 2015, 232: 251-258.
[30] NAZEER N, RATASSEPP M, FAN Z. Damage detection in bent plates using shear horizontal guided waves[J]. Ultrasonics, 2017, 75: 155-163.
[31] SHI W Z, CHEN W W, LU C, et al. Interaction of circumferential SH0 guided wave with circumferential cracks in pipelines[J]. Nondestructive Testing and Evaluation, 2020(1): 1-26.
Outlines

/