Solid Mechanics and Vehicle Conceptual Design

Simulation speed-up and accuracy compensation measures for adjusting mechanism of variable stator vane

  • ZHANG Baozhen ,
  • WANG Hanping ,
  • XU Feng ,
  • WU Zhiqing
Expand
  • 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. AECC Commercial Aircraft Engine Co., Ltd, Shanghai 200241, China

Received date: 2021-07-01

  Revised date: 2021-07-21

  Online published: 2021-08-17

Supported by

National Science and Technology Major Project (J2019-IV-002-0069)

Abstract

The adjusting mechanism of variable stator vane plays an important role in improving the surge margin of the gas turbine engine. Based on the multibody dynamics theory and self-developed parametric modeling platform, a five-stage rigid-flexible coupling dynamic model with complex factors such as temperature effect, dimensional error, moving pair clearance, and nonlinear friction contact, is constructed. The expression of the shaft-bushing normal nonlinear contact force is analytically deduced, and it is verified that the influence of different normal contact force models on the simulation results is less than 2.198%. By simplifying the configuration of the dynamic model, and providing the solver with the partial derivative of the force element with respect to the state variable, the calculation efficiency is increased by 24.56% at the maximum on the premise of ensuring the calculation accuracy of the rigid-flexible coupling dynamics model. Based on the finite difference method, the blocking force and angle adjustment accuracy of the adjustable stator blade adjustment mechanism are solved for some parameters. And based on the local sensitivity, the compensation measures to improve the performance of the mechanism are proposed, and the rationality of the compensation measures is verified through dynamic simulation.

Cite this article

ZHANG Baozhen , WANG Hanping , XU Feng , WU Zhiqing . Simulation speed-up and accuracy compensation measures for adjusting mechanism of variable stator vane[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(9) : 226034 -226034 . DOI: 10.7527/S1000-6893.2021.26034

References

[1] WANG Y. Aeroengine principle[M]. Beijing: Beihang University Press, 2009: 85-99 (in Chinese). 王云. 航空发动机原理[M]. 北京: 北京航空航天大学出版社, 2009: 85-99.
[2] LI S L. Research on VSV faults based CFM56 engine surge[J]. Science Technology and Engineering, 2011, 11(20): 4934-4936, 4940 (in Chinese). 李世林. VSV系统对CFM56发动机喘振的影响分析[J]. 科学技术与工程, 2011, 11(20): 4934-4936, 4940.
[3] YANG W, LUO Q S, ZHANG S P, et al. Dynamics simulation of compressor's adjusting mechanism virtual prototyping based on UG & ADAMS[J]. Gas Turbine Experiment and Research, 2009, 22(2): 22-25 (in Chinese). 杨伟, 罗秋生, 张少平, 等. 基于UG和ADAMS的调节机构虚拟样机动力学仿真[J]. 燃气涡轮试验与研究, 2009, 22(2): 22-25.
[4] HU M, ZHENG L X. Simulation analysis of single-stage variable stator vane system based on CATIA and ADAMS[J]. Aeronautical Manufacturing Technology, 2014, 57(8): 98-101 (in Chinese). 胡明, 郑龙席. 基于CATIA和ADAMS的单级可调静子叶片系统仿真分析[J]. 航空制造技术, 2014, 57(8): 98-101.
[5] LIANG S, YIN X M, WANG H. Parametric design of stator blade jointly adjusting mechanism based on ADAMS[J]. Aeroengine, 2016, 42(1): 65-69 (in Chinese). 梁爽, 印雪梅, 王华. 基于ADAMS的静叶联调机构参数化设计[J]. 航空发动机, 2016, 42(1): 65-69.
[6] SUN K, LIN Q S, ZHANG Y S. Kinematic optimization of compressor VSV system based on ADAMS and ISIGHT[C]//7th CSAA Science and Technology Youth Forum. Beijing: Chinese Society of Aeronautics and Astronautics, 2016: 370-374 (in Chinese). 孙凯, 林清松, 张屹尚. 基于ADAMS与ISIGHT的压气机VSV调节机构运动学优化设计[C]//第七届中国航空学会青年科技论坛文集. 北京: 中国航空学会, 2016: 370-374.
[7] YANG W, XU W. Preliminary application of parameterized analysis based on ADAMS in VSV's adjusting mechanism design of high pressure compressor[J]. Gas Turbine Experiment and Research, 2012, 25(4): 20-24 (in Chinese). 杨伟, 徐伟. ADAMS参数化分析在高压压气机调节机构设计中的初步应用[J]. 燃气涡轮试验与研究, 2012, 25(4): 20-24.
[8] HE F, CHEN G Z, WEN Q, et al. Design of the control mechanism for the multistage axial compressor variable vane[J]. Journal of Aerospace Power, 2007, 22(2): 332-336 (in Chinese). 贺飞, 陈国智, 温泉, 等. 涡轴发动机叶片调节机构设计及应用[J]. 航空动力学报, 2007, 22(2): 332-336.
[9] YU J P, SUN J M, JI F S, et al. Motion analysis and optimization of jointly adjusting mechanism of aero-engine stator vane[J]. Journal of Aerospace Power, 2019, 34(6): 1193-1200 (in Chinese). 于嘉鹏, 孙加明, 纪福森, 等. 航空发动机静叶联调机构运动分析及优化[J]. 航空动力学报, 2019, 34(6): 1193-1200.
[10] TANG Y Y, GUO W Z. Global dimensional optimization for the design of adjusting mechanism of variable stator vanes[J]. Journal of Mechanical Engineering, 2020, 56(11): 26-36 (in Chinese). 唐佑远, 郭为忠. 静叶调节机构尺度全局优化设计方法研究[J]. 机械工程学报, 2020, 56(11): 26-36.
[11] YAN X P, YIN Y Q, CAI X, et al. Simulation on the variable vane's angle change due to the eccentricity and deformation of actuator ring for a compressor[C]//The 4th China Aeronautical science and technology conference. Beijing: Chinese Society of Aeronautics and Astronautics, 2019: 521-525 (in Chinese). 闫晓攀, 银越千, 蔡歆, 等. 某压气机联动环偏心、变形对可调导叶角度变化的仿真分析[C]//第四届中国航空科学技术大会. 北京: 中国航空学会, 2019: 521-525.
[12] ZHENG Y, ZHONG M Q. Analysis of clearance and number influence of linkage ring brackets on stator vane adjustment accuracy[J]. Gas Turbine Experiment and Research, 2020, 33(5): 20-25 (in Chinese). 郑彦, 钟明桥. 联动环支架间隙和数量对静子叶片调节精度的影响[J]. 燃气涡轮试验与研究, 2020, 33(5): 20-25.
[13] ZHA X H, HUANG X M, CHENG S J, et al. Analysis of reliability factor on design of turboshaft engine guide vane adjusting structure[J]. Aviation Precision Manufacturing Technology, 2020, 56(3): 18-21 (in Chinese). 查小晖, 黄晓鸣, 程世君, 等. 涡轴发动机导叶调节结构设计影响因素分析[J]. 航空精密制造技术, 2020, 56(3): 18-21.
[14] ZHANGS P, YANG C, ZHANG Y B. Modeling and simulation of the adjusting mechanism of stators through flexible multibody approach[J]. Gas Turbine Experiment and Research, 2018, 31(4): 12-18 (in Chinese). 张少平, 杨川, 张一彬. 压气机静叶调节机构的柔性多体建模及仿真[J]. 燃气涡轮试验与研究, 2018, 31(4): 12-18.
[15] ZHANG Z, WANG H P, SUN H R, et al. Attribution analysis of blocking force and adjustment accuracy of adjusting mechanism of variable stator vane[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 423789 (in Chinese). 张哲, 王汉平, 孙浩然, 等. VSV调节机构阻滞力和调节精度的归因分析[J]. 航空学报, 2020, 41(12): 423789.
[16] ZHAO Z H, REN G X. A quaternion-based formulation of Euler-Bernoulli beam without singularity[J]. Nonlinear Dynamics, 2012, 67(3): 1825-1835.
[17] SHABANA A A. Computational continuum mechanics[M]. 3rd ed. New York: Cambridge University Press, 2012: 167-221.
[18] SHABANA A A. Dynamics of multibody systems[M]. New York: Wiley, 1989: 309-342.
[19] YU L, ZHAO Z H, REN Q H, et al. Contact simulations of flexible bodies based on absolute nodal coordinates[J]. Journal of Tsinghua University (Science and Technology), 2010, 50(7): 1135-1140 (in Chinese). 虞磊, 赵治华, 任启鸿, 等. 基于绝对节点坐标的柔性体碰撞仿真[J]. 清华大学学报(自然科学版), 2010, 50(7): 1135-1140.
[20] CIAVARELLA M, DECUZZI P. The state of stress induced by the plane frictionless cylindrical contact. I. The case of elastic similarity[J]. International Journal of Solids and Structures, 2001, 38(26-27): 4507-4523.
[21] CIAVARELLA M, DECUZZI P. The state of stress induced by the plane frictionless cylindrical contact. II. The general case (elastic dissimilarity)[J]. International Journal of Solids and Structures, 2001, 38(26-27): 4525-4533.
[22] YAN S Z, XIANG W W K, HUANG T Q. Advances in modeling of clearance joints and dynamics of mechanical systems with clearances[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(4): 741-755 (in Chinese). 阎绍泽, 向吴维凯, 黄铁球. 计及间隙的运动副和机械系统动力学的研究进展[J]. 北京大学学报(自然科学版), 2016, 52(4): 741-755.
[23] LI Y T, QUAN Q Q, TANG D W, et al. Modeling and experimental research on a coordinated contact between a shaft and hole[J]. Journal of Harbin Engineering University, 2016, 37(11): 1546-1552 (in Chinese). 李云涛, 全齐全, 唐德威, 等. 轴孔协调接触建模与试验研究[J]. 哈尔滨工程大学学报, 2016, 37(11): 1546-1552.
[24] LIU C S, ZHANG K, YANG R. The FEM analysis and approximate model for cylindrical joints with clearances[J]. Mechanism and Machine Theory, 2007, 42(2): 183-197.
[25] HAN L S, LI X Y, YAN D K. Analysis on several mathematical methods of sensitivity analysis[J]. China Water Transport, 2008, 8(4): 177-178 (in Chinese). 韩林山, 李向阳, 严大考. 浅析灵敏度分析的几种数学方法[J]. 中国水运(下半月), 2008, 8(4): 177-178.
[26] ZHANG Z. Research on the influencing factors of the retarding force and the regulating precision of the adjusting mechanism[D]. Beijing: Beijing Institute of Technology, 2021: 26-39 (in Chinese). 张哲. 调节机构的阻滞力及调节精度影响因素研究[D]. 北京: 北京理工大学, 2021: 26-39.
Outlines

/