The intelligent design of launch vehicles requires the high calculation efficiency and accuracy of the approximation model, hence a fast cross-validation improved RBF approximation modeling method is proposed. Radial Basis Function (RBF) is one of the most widely-used approximation metamodeling methods for nonlinear multi-peak time-consuming models. Reasonable determination of the shape parameters could greatly improve the prediction accuracy of the RBF approximation model. To solve the problems that many variables are to be determined for RBF with multiple shape parameters and the calculations are complex, a shape parameters characterization method based on the local density of sampling points is proposed. With the proposed method, the determination of multiple RBF shape parameters is transformed into the determination of a single scale factor based on the local density of sampling points. Therefore, the shape parameters optimization problem in RBF is decoupled from the number of training samples. Furthermore, a general fast K-fold cross-validation algorithm is proposed to determine the scale factor of RBF. The fast higher-order inverse matrices formula and fast solution of cross-validation errors formula are derived, which further reduces the computational complexity of shape parameters determination of RBF from n3 to (n/k)3, and improves the efficiency and accuracy of the RBF approximation model. Different numerical examples and engineering examples are used to verify that the proposed method not only has competitive prediction accuracy and versatility but also has application value in the field of flight vehicle design.
WEN Qian
,
YANG Jiawei
,
WU Zeping
,
YANG Xixiang
,
ZHAO Hailong
,
WANG Zhixiang
. An approximation modeling method of launch vehicles improved by fast cross-validation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022
, 43(9)
: 225967
-225967
.
DOI: 10.7527/S1000-6893.2021.25967
[1] HARDY R L. Multiquadric equations of topography and other irregular surfaces[J]. Journal of Geophysical Research, 1971, 76(8): 1905-1915.
[2] CHEN W, TANAKA M. A meshless, integration-free, and boundary-only RBF technique[J]. Computers & Mathematics with Applications, 2002, 43(3-5): 379-391.
[3] JIN R, CHEN W, SIMPSON T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization, 2001, 23(1): 1-13.
[4] WU Z P. Study on sequential approximate optimization and its application[D]. Changsha: National University of Defense Technology, 2013: 20-22 (in Chinese). 武泽平. 序列近似优化方法及其应用研究[D]. 长沙: 国防科技大学, 2013: 20-22.
[5] KITAYAMA S, YAMAZAKI K. Simple estimate of the width in Gaussian kernel with adaptive scaling technique[J]. Applied Soft Computing, 2011, 11(8): 4726-4737.
[6] MU W Y, WANG C L, ZHAO X. A space filling-based cross-validation method and its applications[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(2): 382-388 (in Chinese). 牟唯嫣, 王春玲, 赵昕. 基于空间填充准则的交叉验证方法及其应用[J]. 系统科学与数学, 2020, 40(2): 382-388.
[7] FAN Y D. A summary of cross-validation in model selection[D]. Taiyuan: Shanxi University, 2013: 19-20 (in Chinese). 范永东. 模型选择中的交叉验证方法综述[D]. 太原: 山西大学, 2013: 19-20.
[8] WOLD S. Cross-validatory estimation of the number of components in factor and principal components models[J]. Technometrics, 1978, 20(4): 397-405.
[9] LI Y. The method of fundamental solution with LOOCV for boundary value problems in complicated domains[D]. Taiyuan: Taiyuan University of Technology, 2015: 13 (in Chinese). 李燕. 基于交叉验证的基本解法求复杂区域边界值问题[D]. 太原: 太原理工大学, 2015: 13.
[10] VAN GESTEL T, SUYKENS J A K, BAESENS B, et al. Benchmarking least squares support vector machine classifiers[J]. Machine Learning, 2004, 54(1): 5-32.
[11] DEVROYE L, WAGNER T. Distribution-free performance bounds for potential function rules[J]. IEEE Transactions on Information Theory, 1979, 25(5): 601-604.
[12] GEISSER S. The predictive sample reuse method with applications[J]. Journal of the American Statistical Association, 1975, 70(350): 320-328.
[13] STONE M. Cross-validatory choice and assessment of statistical predictions[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1974, 36(2): 111-133.
[14] ZHANG Y T, MA C, LI Z N, et al. Online modeling of kernel extreme learning machine based on fast leave-one-out cross-validation[J]. Journal of Shanghai Jiao Tong University, 2014, 48(5): 641-646 (in Chinese). 张英堂, 马超, 李志宁, 等. 基于快速留一交叉验证的核极限学习机在线建模[J]. 上海交通大学学报, 2014, 48(5): 641-646.
[15] LIU X Y, LI P, GAO C H. Fast leave-one-out cross-validation algorithm for extreme learning machine[J]. Journal of Shanghai Jiao Tong University, 2011, 45(8): 1140-1145 (in Chinese). 刘学艺, 李平, 郜传厚. 极限学习机的快速留一交叉验证算法[J]. 上海交通大学学报, 2011, 45(8): 1140-1145.
[16] LI J, DUAN P, LYU H Y, et al. RBF shape parameter optimization approach based on ILOOCV and its spatial interpolation experiments[J]. Geography and Geo-Information Science, 2016, 32(3): 39-42, 48 (in Chinese). 李佳, 段平, 吕海洋, 等. 基于改进的逐点交叉验证的RBF形态参数优化方法及其空间插值实验[J]. 地理与地理信息科学, 2016, 32(3): 39-42, 48.
[17] RIPPA S. An algorithm for selecting a good value for the parameter c in radial basis function interpolation[J]. Advances in Computational Mathematics, 1999, 11(2):193-210.
[18] LI X, WANG X P. Study on shape parameter selection for surrogate model constructed by using radial basis function[J]. Systems Engineering and Electronics, 2015, 37(3): 688-692 (in Chinese). 李响, 王晓鹏. 径向基代理模型中形状参数对精度的影响[J]. 系统工程与电子技术, 2015, 37(3): 688-692.
[19] WU Z P, WANG D H, OKOLO N P, et al. Unified estimate of Gaussian kernel width for surrogate models[J]. Neurocomputing, 2016, 203: 41-51
[20] ZHANG Z C, GAO T Y, ZHANG L, et al. Aeroheating agent model based on radial basis function neural network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524167 (in Chinese). 张智超, 高太元, 张磊, 等. 基于径向基神经网络的气动热预测代理模型[J]. 航空学报, 2021, 42(4): 524167.
[21] KLEIJNEN J P C. Kriging metamodeling in simulation: A review[J]. European Journal of Operational Research, 2009, 192(3): 707-716.
[22] ZHANG X, YANG X X, ZHANG W H, et al. An improved CoKriging modeling method and its application[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(4):136-145 (in Chinese). 张锡, 杨希祥, 张为华, 等. 一种改进的CoKriging建模方法及其应用[J]. 中山大学学报(自然科学版), 2021, 60(4):136-145.
[23] WANG Z X, WU Z P, WANG J, et al. Approximation modeling method for cylindrical stiffened shells in large launch vehicles[J]. Journal of Astronautics, 2020, 41(10): 1267-1279 (in Chinese). 王志祥, 武泽平, 王婕, 等. 大型运载火箭加筋柱壳近似建模方法[J]. 宇航学报, 2020, 41(10): 1267-1279.
[24] WANG Z X, LEI Y J, WU Z P, et al. Lightweight design of cylindrical stiffened shells in launch vehicles by a dual-elite population sequential approximation optimization approach[J]. Engineering Optimization, 2021, 53(6): 984-1004.