Articles

SLM element burning behavior of magnesium alloy based on temperature field simulation

  • YANG Guang ,
  • LIU Xuedong ,
  • WANG Congwei ,
  • WANG Congyu ,
  • LIU Dazhi
Expand
  • 1. School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China;
    2. Tangshan Weihao Magnesium Powder Co., LTD, Tangshan 064406, China

Received date: 2021-04-07

  Revised date: 2021-04-25

  Online published: 2021-08-17

Supported by

Defense Industrial Technology Development Program (JCKY2018407C004); Central Government Funds for Guiding Local Scientific and Technological Development (206Z1806G);Hebei Provincial Universities Hundred Excellent Innovative Talents Support Program (SLRC2019050)

Abstract

Due to the high vapor pressure and low melting boiling point of the Mg element in the Selective Laser Melting (SLM) forming process, it is easy to burn and produce a large amount of smoke under the action of high energy laser. To restrain element burning loss in SLM forming of the magnesium alloy, a method for modeling the relationship between the burning loss rate and the process parameters was proposed. First, by simulating the SLM temperature field, the relationship between process parameters and temperature model was established. Second, based on the theory of gas dynamics and thermodynamics, an analytic relation model between the burning rate and temperature was built. Finally, the relationship model between process parameters and element loss rate is developed. It was found that the burning rate is small when the laser power was 70-90 W and the scanning speed was 300-500 mm/s. SLM molding experiments were carried out to verify the window, and it was found that in this window, the amount of smoke was significantly reduced, and the performance of the molds was improved. When the laser power was 85 W and the scanning speed was 400 mm/s, the average tensile strength of the specimen was 324.1 MPa, and the elongation was 10.12%.

Cite this article

YANG Guang , LIU Xuedong , WANG Congwei , WANG Congyu , LIU Dazhi . SLM element burning behavior of magnesium alloy based on temperature field simulation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(4) : 525639 -525639 . DOI: 10.7527/S1000-6893.2021.25639

References

[1] 苏大鹏. 镁合金新材料加工工艺研究[J]. 中国新技术新产品, 2015(7):48. SU D P. Research on processing technology of new magnesium alloy materials[J]. New Technology & New Products of China, 2015(7):48(in Chinese).
[2] 杨胶溪, 吴文亮, 王长亮, 等. 激光选区熔化技术在航空航天领域的发展现状及典型应用[J]. 航空材料学报, 2021, 41(2):1-15. YANG J X, WU W L, WANG C L, et al. Development status and typical application of selective laser melting technology applications in aerospace field[J]. Journal of Aeronautical Materials, 2021, 41(2):1-15(in Chinese).
[3] 岳彦芳, 马方正, 李建辉, 等. AZ91D镁合金激光熔化成型工艺参数优化[J]. 河北工业科技, 2018, 35(4):278-282. YUE Y F, MA F Z, LI J H, et al. Process parameters optimization of selective laser melting molding of AZ91D magnesium alloy[J]. Hebei Journal of Industrial Science and Technology, 2018, 35(4):278-282(in Chinese).
[4] 丁文江, 吴国华, 李中权, 等. 轻质高性能镁合金开发及其在航天航空领域的应用[J]. 上海航天, 2019, 36(2):1-8. DING W J, WU G H, LI Z Q, et al. Development of high-performance light-mass magnesium alloys and applications in aerospace and aviation fields[J]. Aerospace Shanghai, 2019, 36(2):1-8(in Chinese).
[5] 吴国华, 陈玉狮, 丁文江. 镁合金在航空航天领域研究应用现状与展望[J]. 载人航天, 2016, 22(3):281-292. WU G H, CHEN Y S, DING W J. Current research, application and future prospect of magnesium alloys in aerospace industry[J]. Manned Spaceflight, 2016, 22(3):281-292(in Chinese).
[6] PARANDE G, MANAKARI V, MEENASHISUNDARAM G K, et al. Enhancing the hardness/compression/damping response of magnesium by reinforcing with biocompatible silica nanoparticulates[J]. International Journal of Materials Research, 2016, 107(12):1091-1099.
[7] 尹林, 黄华, 袁广银, 等. 可降解镁合金临床应用的最新研究进展[J]. 中国材料进展, 2019, 38(2):126-137. YIN L, HUANG H, YUAN G Y, et al. Latest research progress of biodegradable magnesium alloys in clinical applications[J]. Materials China, 2019, 38(2):126-137(in Chinese).
[8] 申琦, 余森, 牛金龙, 等. 选区激光熔化制备镁基材料研究进展[J]. 材料导报, 2019, 33(增刊1):278-282. SHEN Q, YU S, NIU J L, et al. Selective laser melting of magnesium-based materials:A review[J]. Materials Reports, 2019, 33(Sup.1):278-282(in Chinese).
[9] DENG Q C, WU Y J, LUO Y H, et al. Fabrication of high-strength Mg-Gd-Zn-Zr alloy via selective laser melting[J]. Materials Characterization, 2020, 165:110377.
[10] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10):2690-2698. WANG H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2690-2698(in Chinese).
[11] 王茂松, 杜宇雷. 增材制造钛铝合金研究进展[J]. 航空学报, 2021, 42(7):625263. WANG M S, DU Y L. Research progress of additive manufacturing of TiAl alloys[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7):625263(in Chinese).
[12] 程龙. 选区激光熔化纯镁成型组织与腐蚀机理的研究[D]. 重庆:重庆大学, 2016:6-7. CHENG L. Study on microstructure and corrosion mechanism of selective laser melting magnesium alloy[D]. Chongqing:Chongqing University, 2016:6-7(in Chinese).
[13] WEI K W, WANG Z M, ZENG X Y. Influence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg-Zn-Zr components[J]. Materials Letters, 2015, 156:187-190.
[14] WEI K W, GAO M, WANG Z M, et al. Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy[J]. Materials Science and Engineering:A, 2014, 611:212-222.
[15] ATTAR H, PRASHANTH K G, ZHANG L C, et al. Effect of powder particle shape on the properties of in situ Ti-TiB composite materials produced by selective laser melting[J]. Journal of Materials Science & Technology, 2015, 31(10):1001-1005.
[16] HU D, WANG Y, ZHANG D F, et al. Experimental investigation on selective laser melting of bulk net-shape pure magnesium[J]. Materials and Manufacturing Processes, 2015, 30(11):1298-1304.
[17] 谢辙. 选区激光熔化成形AZ91D镁合金的工艺与机理研究[D]. 武汉:华中科技大学, 2013:17-29. XIE Z. Research on processing and mechanism of AZ91D magnesium alloy by selective laser melting[D]. Wuhan:Huazhong University of Science and Technology, 2013:17-29(in Chinese).
[18] 胡国文. 选区激光熔化成形ZK61镁合金的工艺与机理研究[D]. 武汉:华中科技大学, 2013:33-41. HU G W. Research on processing and forming mechanism of ZK61 magnesium alloy by selective laser melting[D]. Wuhan:Huazhong University of Science and Technology, 2013:33-41(in Chinese).
[19] 魏恺文, 王泽敏, 曾晓雁. AZ91D镁合金在激光选区熔化成形中的元素烧损[J]. 金属学报, 2016, 52(2):184-190. WEI K W, WANG Z M, ZENG X Y. Element loss of AZ91D magnesium alloy during selective laser melting process[J]. Acta Metallurgica Sinica, 2016, 52(2):184-190(in Chinese).
[20] ZHANG B C, DEMBINSKI L, CODDET C. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder[J]. Materials Science and Engineering:A, 2013, 584:21-31.
[21] GUSAROV A V, LAOUI T, FROYEN L, et al. Contact thermal conductivity of a powder bed in selective laser sintering[J]. International Journal of Heat and Mass Transfer, 2003, 46(6):1103-1109.
[22] XIAO D M, HE K F, WANG D. Transient temperature evolution of selective laser melting process based on multilayer finite element model[J]. Infrared and Laser Engineering, 2015, 44(9):2672-2678(in Chinese).
[23] 姜献峰, 宋荣伟, 熊志越, 等. 316L金属粉末选择性激光熔化瞬态温度场的模拟[J]. 应用激光, 2015, 35(6):648-651. JIANG X F, SONG R W, XIONG Z Y, et al. The transient simulation for temperature field of selective laser melting of 316L metal powder[J]. Applied Laser, 2015, 35(6):648-651(in Chinese).
[24] 王佳琛. Inconel 718合金选区激光熔化温度场及微熔池传热研究[D]. 哈尔滨:哈尔滨工业大学, 2016:23-24. WANG J C. Research on the temperature field and the heat transfer of tiny molten pool during selective laser melting of Inconel 718[D]. Harbin:Harbin Institute of Technology, 2016:23-24(in Chinese).
[25] 朱润东, 李志勇, 李晓锡, 等. AZ91D镁合金表面激光熔覆Al-Cu合金的温度场模拟与验证[J]. 表面技术, 2014, 43(6):84-89, 130. ZHU R D, LI Z Y, LI X X, et al. Simulation and experimental verification of laser cladding temperature field for Al-Cu alloy on AZ91D magnesium alloy surface[J]. Surface Technology, 2014, 43(6):84-89, 130(in Chinese).
[26] 周华. 激光选区熔化成形ZK61镁合金工艺及组织性能研究[D]. 武汉:华中科技大学, 2019:37-38. ZHOU H. Study on process and microstructure and properties of ZK61 magnesium alloy by selective laser melting[D]. Wuhan:Huazhong University of Science and Technology, 2019:37-38(in Chinese).
[27] 曹龙超, 周奇, 韩远飞, 等. 激光选区熔化增材制造缺陷智能监测与过程控制综述[J]. 航空学报, 2021, 42(10):524790. CAO L C, ZHOU Q, HAN Y F, et al. Review on intelligent monitoring of defects and process control of selective laser melting additive manufacturing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10):524790(in Chinese).
[28] 刘帅. AZ61镁合金选择性激光熔化工艺与性能研究[D]. 北京:北京科技大学, 2020. LIU S. Research on the process and properties of AZ61 magnesium alloy fabricated by selective laser melting[D]. Beijing:University of Science and Technology Beijing, 2020(in Chinese).
[29] BLOCK-BOLTEN A, EAGAR T W. Metal vaporization from weld pools[J]. Metallurgical Transactions:B, 1984, 15(3):461-469.
[30] GALE W F, TOTEMEIER T C. Smithells metals reference book[M]. Berlin:Elsevier, 2003:8.
[31] 成雅徽. GH4169合金粉末选区激光熔化成形数值模拟及试验研究[D]. 太原:中北大学, 2016:27-30. CHENG Y H. Numerical simulation and experimental research of selective laser melting on nickel based alloy powder GH4169[D]. Taiyuan:North University of China, 2016:27-30(in Chinese).
[32] 顾冬冬, 张晗, 刘刚, 等. 稀土改性高强铝微桁架激光增材制造工艺调控[J]. 航空学报, 2021, 42(10):524868. GU D D, ZHANG H, LIU G, et al. Process optimization of additive manufactured sandwich panel structure using rare earth element modified high-performance Al alloy[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10):524868(in Chinese).
Outlines

/