Articles

Dynamic response of fuselage panel under explosive impact load

  • FENG Zhenyu ,
  • FU Boyu ,
  • XIE Jiang ,
  • DUAN Zhuxuan ,
  • PAN Hanyuan
Expand
  • 1. College of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China;
    2. Key Laboratory of Civil Aircraft Airworthiness Technology, Civil Aviation Administration of China, Tianjin 300300, China

Received date: 2021-03-17

  Revised date: 2021-08-17

  Online published: 2021-08-17

Supported by

Aeronautical Science Foundation of China (201941067001);Graduate Research and Innovation Funding Project of Civil Aviation University of China (2020YJS049)

Abstract

In order to meet the design requirements of the "Least Risk Bomb Location (LRBL)", it is necessary to conduct research on the dynamic response of the fuselage panel under the explosive impact load. In this paper, a finite element model of aluminum alloy fuselage panels is established with reference to the typical passenger aircraft fuselage structure, and the effects of pressurization, explosion impact position and charge on the deformation mode and failure behavior of fuselage panels are analyzed. The results show that when the fuselage panel skin does not fail, the effect of pressurization on the overall deformation mode is small; when the fuselage panel skin fails, the effect of pressurization on the overall failure behavior is severe; when the explosion impacts different positions, the opening damage caused by the impact of the long truss and the bulkhead position is less, but the structure produces longer crack damage. The results also show that as the amount of charge increases, the shock wave is transmitted to the structure faster, and the impact position obtains a greater deformation speed.

Cite this article

FENG Zhenyu , FU Boyu , XIE Jiang , DUAN Zhuxuan , PAN Hanyuan . Dynamic response of fuselage panel under explosive impact load[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(6) : 525513 -525513 . DOI: 10.7527/S1000-6893.2021.25513

References

[1] MARTIN R G M, BRISTOW J W. Research programme into civil aircraft hardening[C]//Conference Proceedings, The Federal Aviation Administration's Third International Aviation Security Technology Symposium. Atlantic City:National Safe Skies Alliance,2001.
[2] FAA. FAR part 25 amendment No:25-127:Security considerations requirements for transport gategory airplanes[S]. Washington, D.C.:FAA, 2008.
[3] FAA. AC25. 795-6:Least risk bomb location[S]. Washington, D.C.:FAA, 2008.
[4] ALESSANDRO B, APPOLONIA S. Advanced technologies for bomb-proof cargo containers and blast containment units for the retrofitting of passenger airplanes:FPT-AAT-2012-RTO-1[R]. London:CAA,2015.
[5] ZANGANI D, AMBROSETTI S, BOZZOLO A, et al. Textile-based luggage containers for onboard blast protection[J]. SAE International Journal of Aerospace, 2011, 4(2):690-698.
[6] ANON A. Aircraft hardening research programme final overview report:ISBN-086039-828-5[R]. London:CAA, 2001.
[7] GREENWALD A J, MCIVER R G. Cabin pressurization characteristics of USAF and commercial transport aircraft[R]. Aeromedical Reviews,1967,38(8):1-20.
[8] JACOB N, YUEN S C K, NURICK G N, et al. Scaling aspects of quadrangular plates subjected to localised blast loads-experiments and predictions[J]. International Journal of Impact Engineering, 2004, 30(8-9):1179-1208.
[9] NURICK G N, OLSON M D, FAGNAN J R, et al. Deformation and tearing of blast-loaded stiffened square plates[J]. International Journal of Impact Engineering, 1995, 16(2):273-291.
[10] YUEN S C K, NURICK G N. Experimental and numerical studies on the response of quadrangular stiffened plates. Part I:subjected to uniform blast load[J]. International Journal of Impact Engineering, 2005, 31(1):55-83.
[11] 刘敬喜, 刘尧, 李威. 爆炸载荷作用下单向加筋板的塑性动力响应分析[J]. 中国舰船研究, 2010, 5(5):6-9. LIU J X, LIU Y, LI W. Dynamic plastic response of one-way stiffened plates subjected to blast loads[J]. Chinese Journal of Ship Research, 2010, 5(5):6-9(in Chinese).
[12] 刘敬喜, 刘尧, 汤皓泉, 等. 爆炸载荷作用下单向加筋方板的大挠度塑性动力响应分析[J]. 振动与冲击, 2011, 30(4):182-187. LIU J X, LIU Y, TANG H Q, et al. Plastic and large deflection dynamic response analysis of a one way stiffened square plate subjected to blast loads[J]. Journal of Vibration and Shock, 2011, 30(4):182-187(in Chinese).
[13] 牟金磊, 朱锡, 张振华, 等. 水下爆炸载荷作用下加筋板变形及开裂试验研究[J]. 振动与冲击, 2008, 27(1):57-60, 182. MU J L, ZHU X, ZHANG Z H, et al. Experimental study on deformation and rupture of stiffened plates subjected to underwater shock[J]. Journal of Vibration and Shock, 2008, 27(1):57-60, 182(in Chinese).
[14] VELDMAN R L, ARI-GUR J, CLUM C. Response of pre-pressurized reinforced plates under blast loading[J]. International Journal of Impact Engineering, 2008, 35(4):240-250.
[15] VELDMAN R L, ARI-GUR J, CLUM C, et al. Effects of pre-pressurization on blast response of clamped aluminum plates[J]. International Journal of Impact Engineering, 2006, 32(10):1678-1695.
[16] 梅志远, 朱锡, 刘润泉. 船用加筋板架爆炸载荷下动态响应数值分析[J]. 爆炸与冲击, 2004, 24(1):80-84. MEI Z Y, ZHU X, LIU R Q. Dynamic response researches of ship's stiffened plate structure under explosive load[J]. Explosion and Shock Waves, 2004, 24(1):80-84(in Chinese).
[17] 侯海量, 朱锡, 古美邦. 爆炸载荷作用下加筋板的失效模式分析及结构优化设计[J]. 爆炸与冲击, 2007, 27(1):26-33. HOU H L, ZHU X, GU M B. Study on failure mode of stiffened plate and optimized design of structure subjected to blast load[J]. Explosion and Shock Waves, 2007, 27(1):26-33(in Chinese).
[18] 张婧, 施兴华, 王善. 船用加筋板在水下接触爆炸作用下动态响应数值分析[J]. 系统仿真学报, 2009, 21(24):7929-7933. ZHANG J, SHI X H, WANG S. Dynamic response researches of ship stiffened plate structure subjected to underwater contact explosions[J]. Journal of System Simulation, 2009, 21(24):7929-7933(in Chinese).
[19] 张馨, 王善, 陈振勇, 等. 水下接触爆炸作用下加筋板的动态响应分析[J]. 系统仿真学报, 2007, 19(2):257-260. ZHANG X, WANG S, CHEN Z Y, et al. Research on dynamic responses of stiffened-plate under underwater osculatory explosion[J]. Journal of System Simulation, 2007, 19(2):257-260(in Chinese).
[20] 郑金国, 周书婷, 解江, 等. 爆炸载荷作用下2024-T3铝合金板动态响应试验研究[J]. 装备制造技术, 2017(2):127-130. ZHENG J G, ZHOU S T, XIE J, et al. Experimental method for dynamic response of 2024-T3 aluminum alloy plate under blast load[J]. Equipment Manufacturing Technology, 2017(2):127-130(in Chinese).
[21] 周书婷. 爆炸冲击载荷下铝合金机身壁板结构响应及破坏模式研究[D]. 天津:中国民航大学, 2018:27-37. ZHOU S T. Dynamic response and failure modes of aluminum alloy fuselage panel subjected to blast load[D]. Tianjin:Civil Aviation University of China, 2018:27-37(in Chinese).
[22] 解江, 李翰, 周书婷, 等. 爆炸冲击载荷下航空铝合金平板动态响应数值分析方法[J]. 应用数学和力学, 2017, 38(4):410-420. XIE J, LI H, ZHOU S T, et al. A numerical method for dynamic responses of aviation aluminum alloy plates under blast loads[J]. Applied Mathematics and Mechanics, 2017, 38(4):410-420(in Chinese).
[23] OLSON M D, NURICK G N, FAGNAN J R. Deformation and rupture of blast loaded square plates-predictions and experiments[J]. International Journal of Impact Engineering, 1993, 13(2):279-291.
[24] 赵一帆. 航空铆接结构失效分析及建模方法研究[D]. 天津:中国民航大学, 2020:47-62. ZHAO Y F. Failure properties and modeling analysis of aeronautic rivet connection[D]. Tianjin:Civil Aviation University of China, 2020:47-62(in Chinese).
[25] 李恒晖. 机身典型结构元件冲击失效行为及数值分析[D]. 天津:中国民航大学, 2020:18-33. LI H H. Impact failure behavior and numerical analysis of typical fuselage structural element[D]. Tianjin:Civil Aviation University of China, 2020:18-33(in Chinese).
[26] GHARABABAEI H, DARVIZEH A, DARVIZEH M. Analytical and experimental studies for deformation of circular plates subjected to blast loading[J]. Journal of Mechanical Science and Technology, 2010, 24(9):1855-1864.
[27] ANON A. Report on the accident to Boeing 747-121, N739A at Lockerbie, Dumfriesshire, Scotland on 21 December 1988:Aircraft Accident Report 2/90[R]. London:United Kingdom Air Accidents Investigations Branch, HMO, 1990.
[28] BHARATRAM G, VENKAYYA V, SCHIMMELS S, et a1. Local panel model analysis of Boeing-707:Wright Laboratory Research Report[R]. State of Ohio:Wright-Patterson Air Force Base, 1995.
Outlines

/