Articles

Roll oscillations over wing-body configuration with strake wings: Experiment

  • LI Qian ,
  • WANG Yankui ,
  • JIA Yuhong
Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2021-06-23

  Revised date: 2021-07-16

  Online published: 2021-08-03

Supported by

National Natural Science Foundation of China (11972060,11721202)

Abstract

Aiming at the problem of un-commanded motion at high angles of attack, we study the roll oscillation of wing-body configurations with strake wings through wind tunnel experiments such as free-to-roll tests, force and pressure measurement, and Particle Image Velocimetry (PIV). The pitch angle zones of roll oscillations are obtained, the dominant flow inducing wing rock revealed, and the triggering, deviation and sustaining mechanisms of roll oscillations discussed. The results show that the wing rock is onset over the wing-body configuration with strake wings at high angles of attack. The roll oscillation can be divided into three areas:fixed-point motion zone one (pitch angle 5°-35°), limit-cycle oscillation zone (pitch angle 37.5°-50°) and fixed-point motion zone two (pitch angle 55°-70°). The limit-cycle oscillation zone can be further divided into the fore-body vortex no-dominant zone (pitch angle 37.5°-45°) and partially-dominant zone (pitch angle 47.5°-50°). The analysis of the wing rock at pitch angles 40° and 50° reveals that the evolution of the wake of the strake wing vortex or merged strake wing vortex at zero roll angle and nonzero roll angle forms the triggering and deviation mechanisms, respectively. The hysteresis of the wake undergoing roll oscillations forms the sustaining mechanism.

Cite this article

LI Qian , WANG Yankui , JIA Yuhong . Roll oscillations over wing-body configuration with strake wings: Experiment[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(11) : 526008 -526008 . DOI: 10.7527/S1000-6893.2021.26008

References

[1] KATZ J. Wing/vortex interactions and wing rock[J]. Progress in Aerospace Sciences, 1999, 35(7):727-750.
[2] NELSON R C, PELLETIER A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Sciences, 2003, 39(2-3):185-248.
[3] 刘伟, 杨小亮, 张涵信, 等. 大攻角运动时的机翼摇滚问题研究综述[J]. 力学进展, 2008, 38(2):214-228. LIU W, YANG X L, ZHANG H X, et al. A review on investigations of wing rock problems under high angles of attack[J]. Advances in Mechanics, 2008, 38(2):214-228(in Chinese).
[4] ERICSSON L E. Various sources of wing rock[J]. Journal of Aircraft, 1990, 27(6):488-494.
[5] LEVIN D, KATZ J. Self-induced roll oscillations of low-aspect-ratio rectangular wings[J]. Journal of Aircraft, 1992, 29(4):698-702.
[6] ERICSSON L E. Wing rock of nonslender delta wings[J]. Journal of Aircraft, 2001, 38(1):36-41.
[7] GURSUL I, GORDNIER R, VISBAL M. Unsteady aerodynamics of nonslender delta wings[J]. Progress in Aerospace Sciences, 2005, 41(7):515-557.
[8] GRESHAM N T, WANG Z J, GURSUL I. Self-induced roll oscillations of nonslender wings[J]. AIAA Journal, 2009, 47(3):481-483.
[9] GRESHAM N T, WANG Z, GURSUL I. Vortex dynamics of free-to-roll slender and nonslender delta wings[J]. Journal of Aircraft, 2010, 47(1):292-302.
[10] PELLETIER A, NELSON R. Dynamic behavior of an 80-deg/65-deg double-delta wing in roll[C]//23rd Atmospheric Flight Mechanics Conference. Reston:AIAA, 1998.
[11] DONG Y Z, SHI Z W, CHEN K, et al. The suppression of flying-wing roll oscillations with open and closed-loop spanwise blowing[J]. Aerospace Science and Technology, 2020, 99:105766.
[12] QUAST T, NELSON R, FISHER D. A study of high alpha dynamics and flow visualization for a 2.5-percent model of the F-18 HARV undergoing wing rock[C]//9th Applied Aerodynamics Conference. Reston:AIAA, 1991.
[13] D WILLIAMS I, NELSON R, FISHER D. An investigation of X-31 roll characteristics at high angle-of-attack through subscale model testing[C]//32nd Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1994.
[14] NGUYEN L, YIP L, CHAMBERS J. Self-induced wing rock of slender delta wings[C]//7th Atmospheric Flight Mechanics Conference. Reston:AIAA, 1981.
[15] LEVIN D, KATZ J. Dynamic load measurements with delta wings undergoing self-induced roll oscillations[J]. Journal of Aircraft, 1984, 21(1):30-36.
[16] ERICSSON L E. The fluid mechanics of slender wing rock[J]. Journal of Aircraft, 1984, 21(5):322-328.
[17] ARENA A S, NELSON R C. Experimental investigations on limit cycle wing rock of slender wings[J]. Journal of Aircraft, 1994, 31(5):1148-1155.
[18] NG T T, MALCOLM G N, LEWIS L C. Experimental study of vortex flows over delta wings in wing-rock motion[J]. Journal of Aircraft, 1992, 29(4):598-603.
[19] ERICKSON G E, BRANDON J M. On the nonlinear aerodynamic and stability characteristics of a generic chine forebody slender-wing fighter configuration[C]//5th Applied Aerodynamics Conference. Reston:AIAA, 1987.
[20] BRANDON J M, NGUYEN L T. Experimental study of effects of forebody geometry on high angle-of-attack stability[J]. Journal of Aircraft, 1988, 25(7):591-597.
[21] ERICSSON L E. Review of forebody-induced wing rock[J]. Journal of Aircraft, 1996, 33(2):253-259.
[22] 孙海生, 姜裕标. 飞机机翼摇滚低速风洞实验研究[J]. 流体力学实验与测量, 2000, 14(4):32-35, 40. SUN H S, JIANG Y B. Investigation on wing rock in low speed wind tunnel for a fighter configuration[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(4):32-35, 40(in Chinese).
[23] DENG X Y, WANG G, CHEN X R, et al. A physical model of asymmetric vortices flow structure in regular state over slender body at high angle of attack[J]. Science in China Series E:Technological Sciences, 2003, 46(6):561-573.
[24] CHEN X R, DENG X Y, WANG Y K, et al. Influence of nose perturbations on behaviors of asymmetric vortices over slender body[J]. Acta Mechanica Sinica, 2002, 18(6):581-593.
[25] WANG B, DENG X Y, MA B F, et al. Effects of tip perturbation and wing locations on rolling oscillation induced by forebody vortices[J]. Acta Mechanica Sinica, 2010, 26(5):787-791.
[26] MA B F, DENG X Y, RONG Z, et al. The self-excited rolling oscillations induced by fore-body vortices[J]. Aerospace Science and Technology, 2015, 47:299-313.
[27] 陶洋, 赵忠良, 杨海泳. 翼身组合体摇滚特性高速试验研究[J]. 实验流体力学, 2011, 25(6):45-48. TAO Y, ZHAO Z L, YANG H Y. Investigation on wing rock of wing-body configuration at high speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6):45-48(in Chinese).
[28] 陶洋, 赵忠良, 王红彪, 等. 前体涡诱导机翼摇滚扰动控制高速风洞试验研究[J]. 实验流体力学, 2014, 28(1):21-25. TAO Y, ZHAO Z L, WANG H B, et al. Flow control investigation on wing rock induced by forebody vortex at high speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(1):21-25(in Chinese).
[29] ERICSSON L, BEYERS M. The challenge of determining combat aircraft wing rock through subscale testing[C]//41st Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2003.
[30] MA B F, WANG B, DENG X Y. Effects of Reynolds numbers on wing rock induced by forebody vortices[J]. AIAA Journal, 2017, 55(9):2980-2991.
[31] 刘伟,张涵信.细长机翼摇滚的非线性动力学分析及数值模拟[C]//计算流体力学研究进展——第十二届全国计算流体力学会议论文集. 绵阳:中国空气动力学会, 2004:370-376. LIU W, ZHANG H X. Nonlinear dynamic analysis and simulation of wing rock for a slender wing[C]//Progress in Computation Fluid Dynamics Proceeding of 12th China Computational Fluid Dynamics Conference. Mianyang:Aerodynamics Society of China, 2004:370-376(in Chinese).
[32] 魏德宸, 史志伟, 耿玺, 等. 鸭式布局飞行器的翼体摇滚特性风洞试验[J]. 航空学报, 2016, 37(10):3003-3010. WEI D C, SHI Z W, GENG X, et al. Wind tunnel test for wing-body rock of canard-configuration aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3003-3010(in Chinese).
[33] 魏德宸, 史志伟, 昂海松, 等. 俯仰角对鸭式布局飞机摇滚运动的影响与机理分析[J]. 空气动力学学报, 2017, 35(2):198-204. WEI D C, SHI Z W, ANG H S, et al. Effects of pitch angle on wing-body rock of canard-configuration aircraft[J]. Acta Aerodynamica Sinica, 2017, 35(2):198-204(in Chinese).
[34] 李其畅, 赵忠良, 杨海泳, 等. 边条翼和近距鸭翼布局模型动态气动特性分析[J]. 空气动力学学报, 2015, 33(2):178-182. LI Q C, ZHAO Z L, YANG H Y, et al. Dynamic characteristics of hinged strake-wing and close-coupled wing-canard configuration fighter models[J]. Acta Aerodynamica Sinica, 2015, 33(2):178-182(in Chinese).
[35] 赵忠良,马上,李玉平,等. 不同布局构型诱发的摇滚特性试验研究[C]//第九届全国流体力学学术会议摘要集. 北京:中国力学学会, 2016:CSTAM2016-A56-B0803. ZHAO Z L, MA S, LI Y P, et al. Experimental investigation on wing rock induced by different configurations[C]//Abstract Proceeding of 9th National Fluid Mechanics Conference. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2016:CSTAM2016-A56-B0803(in Chinese).
[36] CHUNG H S, CHO D, KIM J, et al. Experimental investigation of wing rock phenomenon of a fighter aircraft with conical forebody[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(2):303-317.
[37] 王兵, 黄存栋, 马宝峰, 等. 精确复现机翼摇滚运动的控制技术[J]. 实验流体力学, 2009, 23(1):79-84, 104. WANG B, HUANG C D, MA B F, et al. The control method of precise reproduction of the wing rock motion[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(1):79-84, 104(in Chinese).
Outlines

/