ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Application and development of green structure maintenance for civil aircraft
Received date: 2021-05-24
Revised date: 2021-06-30
Accepted date: 2021-07-21
Online published: 2021-08-03
Supported by
National Natural Science Foundation of China(52075232);Natural Science Foundation of Jiangsu Province(BK20201112)
The application and development of green aviation and green aviation maintenance technologies significantly promote the development and deep integration of new materials, new technologies, digitization, networking, intelligence and industrialization of green civil aircraft maintenance. Meanwhile, the repair industry tends to undergo green, circular, and low-carbon development, industry and equipment transformation and upgrading, and sustainable development. This paper explains the concept and connotation of green civil aircraft maintenance, followed by detailed introduction of several key technologies and their research status in new green maintenance materials, including new repairing materials, advanced coatings, environmental cleaning means, advanced non-destructive testing and evaluation technologies, block chain, remote AR and 5G application, big data and digital twin technologies, advanced repair technologies, intelligent maintenance and remote expert systems. These key technologies provide both ways to implement green aircraft maintenance and technical reference for sustainable development of the green aviation.
Fangli WANG , Kai LIU , Wei PAN , Mingbo TONG . Application and development of green structure maintenance for civil aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(11) : 25851 -025851 . DOI: 10.7527/S1000-6893.2021.25851
1 | LEE Ann Shay. 2020年全球各地MRO市场预测[J]. 航空维修与工程, 2020(1): 20. |
LEE A S. MRO regional projections for 2020[J]. Aviation Maintenance & Engineering, 2020(1): 20 (in Chinese). | |
2 | 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2): 317-322. |
MA L M, ZHANG J Z, YUE G Q, et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica, 2015, 32(2): 317-322 (in Chinese). | |
3 | 徐进军, 康唯, 都昌兵. 航空航天铝锂合金及其成形技术的研究现状和发展趋势[J]. 兵器材料科学与工程, 2017, 40(3): 132-137. |
XU J J, KANG W, DU C B. Research status and development trends of Al-Li alloys for aeronautic and astronautic industry[J]. Ordnance Material Science and Engineering, 2017, 40(3): 132-137 (in Chinese). | |
4 | 韩天时, 刘鑫. 钛合金焊接在民用飞机维修中的应用[J]. 热加工工艺, 2018, 47(3): 199-202. |
HAN T S, LIU X. Application of titanium alloy welding in civil aircraft maintenance[J]. Hot Working Technology, 2018, 47(3): 199-202 (in Chinese). | |
5 | 杨富强, 熊慧, 任柏峰, 等. 先进铝锂合金的发展及应用[J]. 世界有色金属, 2018(22): 1-5. |
YANG F Q, XIONG H, REN B F, et al. Development and application of advanced aluminum-lithium alloy[J]. World Nonferrous Metals, 2018(22): 1-5 (in Chinese). | |
6 | 李亚江, 刘坤. 钛合金在航空领域的应用及其先进连接技术[J]. 航空制造技术, 2015, 58(16): 34-37. |
LI Y J, LIU K. Application and advanced bonding technology of titanium alloy in aviation industry[J]. Aeronautical Manufacturing Technology, 2015, 58(16): 34-37 (in Chinese). | |
7 | 周如东. 飞机蒙皮表面处理和涂层选择及涂装工艺[J]. 涂层与防护, 2018, 39(6): 51-54, 62. |
ZHOU R D. Surface treatment and coating process of aircraft skin[J]. Coating and Protection, 2018, 39(6): 51-54, 62 (in Chinese). | |
8 | 刘芳, 戚晓专, 王锋. 飞机退漆、洗机废水处理试验研究[J]. 给水排水, 2004, 30(4): 56-58. |
LIU F, QI X Z, WANG F. Experimental research on aircraft washing and de-painting wastewater treatment[J]. Water & Wastewater Engineering, 2004, 30(4): 56-58 (in Chinese). | |
9 | 于国玲, 张继芳, 王学克, 等. 新型高固体分涂料的最新研究进展[J]. 弹性体, 2020, 30(2): 73-76. |
YU G L, ZHANG J F, WANG X K, et al. Development of new high solid coating[J]. China Elastomerics, 2020, 30(2): 73-76 (in Chinese). | |
10 | ATHAWALE V D, NIMBALKAR R V. Waterborne coatings based on renewable oil resources: An overview[J]. Journal of the American Oil Chemists’ Society, 2011, 88(2): 159-185. |
11 | 郝江华, 周雁文, 魏江涛. 浅谈电镀锌-镍合金代替氰化镀镉工艺的可行性[J]. 科技创新与应用, 2016(30): 123. |
HAO J H, ZHOU Y W, WEI J T. Discussion on the feasibility of replacing cyanide cadmium plating process with zinc-nickel alloy electroplating[J]. Technology Innovation and Application, 2016(30): 123 (in Chinese). | |
12 | 陈江,刘玉兰. 激光再制造技术工程化应用. 绿色再制造与绿色维修[C]∥第二届全国装备再制造工程学术会议暨首届青年再制造工程学术论坛论文集. 2006:49-54. |
CHEN J, LIU Y L. Engineering application of laser remanufacturing technology. Green remanufacturing and green maintenance[C]∥Proceedings of the second national Equipment Remanufacturing Engineering Academic Conference and the first youth Remanufacturing Engineering Academic Forum. 2006: 49-54 (in Chinese). | |
13 | 李涛, 韦利军, 王小龙. 飞机新型环保防腐蚀清洗剂的研制[J]. 科技创新与应用, 2015(20): 37. |
LI T, WEI L J, WANG X L. Development of new environmental protection and anti-corrosion cleaning agent for aircraft[J]. Technology Innovation and Application, 2015(20): 37 (in Chinese). | |
14 | 魏铭, 朱焱. 无磷水基金属清洗剂的研制[J]. 材料保护, 2007, 40(4): 30-31, 38, 74. |
WEI M, ZHU Y. Preparation of phosphorus-free water-based cleaning agent for metals[J]. Materials Protection, 2007, 40(4): 30-31, 38, 74 (in Chinese). | |
15 | 张克文. 长输管道超声波在线检测技术探讨[J]. 石油化工安全环保技术, 2010, 26(3): 27-30, 68. |
ZHANG K W. Discussion on ultrasonic on-line inspection technology for long distance pipeline[J]. Petrochemical Safety and Environmental Protection Technology, 2010, 26(3): 27-30, 68 (in Chinese). | |
16 | IMIELI?SKA K, CASTAINGS M, WOJTYRA R, et al. Air-coupled ultrasonic C-scan technique in impact response testing of carbon fibre and hybrid: Glass, carbon and Kevlar/epoxy composites[J]. Journal of Materials Processing Technology, 2004, 157-158: 513-522. |
17 | PETERS J J, BARNARD D J, HSU D K. Development of a fieldable air‐coupled ultrasonic inspection system[J]. AIP Conference Proceedings, 2004, 700(1): 1368-1375. |
18 | HILLGER W, MEIER R, HENRICH R. Inspection of CFRP components by ultrasonic imaging with air-coupling[J]. Insight - Non-Destructive Testing and Condition Monitoring, 2004, 46(3): 147-150. |
19 | 耿荣生. 迅速发展的中国无损检测事业[J]. 无损检测, 2008, 30(2): 69-72, 76. |
GENG R S. On the rapidly developing nondestructive testing technology in China[J]. Nondestructive Testing Technologying, 2008, 30(2): 69-72, 76 (in Chinese). | |
20 | TRAN T. The feasibility of using X-Ray induced acoustic computed tomography for non-destructive testing of aircraft structural[D].Norman: The University of Oklahoma, 2020. |
21 | OSPENNIKOVA O G, KOSARINA E I, KRUPNINA O A. X-ray nondestructive testing as an essential tool during technology design and development of modern aircraft materials[J]. Inorganic Materials: Applied Research, 2019, 10(6): 1510-1516. |
22 | 董祥明,刘德峰,刘伟,等. 太赫兹无损检测技术[C]∥第十六届中国航空测控技术年会,2019:299-302,327. |
DONG X M, LIU D F, LIU W, et al. Terahertz nondestructive testing technology[C]∥Proceedings of the 16th China Annual Conference on Aviation Measurement and Control Technology, 2019:299-302,327 (in Chinese). | |
23 | WAN M, WANG H T, JIANG Z F, et al. The research and application of ESPI technology on honeycomb structuralmaterials[J]. Journal of Nanchang Hangkong University:Natural Sciences,2007, 21:249-252. |
24 | WANG Y L. Electonic speckle pattern interferometer and laser shearography thchnique[J]. Nondestructive Testing, 2003, 25(2):96-98. |
25 | XIAO Y S, ZENG Q L, MA T J. Development and application of new non-destructive laser speckle instrument for tiretesting[J]. Non-destructive Inspection, 2012, 36(1): 19-22. |
26 | JIAN Z. Studies on filed-applicable shearography NDT of airplane composites[J]. Nondestructive Testing, 2007, 29(7): 378-381. |
27 | PANTANO A, CERNIGLIA D. Simulation of laser-generated ultrasonic wave propagation in solid media and air with application to NDE[J]. Applied Physics A, 2010, 98(2): 327-336. |
28 | MIRKHANI K, CHAGGARES C, MASTERSON C, et al. Optimal design of EMAT transmitters[J]. NDT & E International, 2004, 37(3): 181-193. |
29 | 魏东, 周正干. 固体中脉冲超声波传播的有限差分模拟[J]. 航空学报, 2010, 31(2): 388-392. |
WEI D, ZHOU Z G. Finite difference simulation of pulsed ultrasonic propagation in solids[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2): 388-392 (in Chinese). | |
30 | 徐圆飞, 徐春广, 肖定国, 等. 超声换能器脉冲波声场数值计算与测试[J]. 航空学报, 2008, 29(6): 1705-1709. |
XU Y F, XU C G, XIAO D G, et al. Computation and measurement for pulse sound field of ultrasonic transducer[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1705-1709 (in Chinese). | |
31 | GORANSON U G. Fatigue issues in aircraft maintenance and repairs[J]. International Journal of Fatigue, 1997, 19(93): 3-21. |
32 | Paul Seidenman, Spanovich David J., 蓝楠. 维修业各方积极推动数字化维修记录的发展[J]. 航空维修与工程, 2016(10): 18-19. |
SEIDENMAN P, SPANOVICH D J, LAN N. Why airlines, aftermarket struggle with digital record-keeping[J]. Aviation Maintenance & Engineering, 2016(10): 18-19 (in Chinese). | |
33 | ALESHI A. Secure aircraft maintenance records using blockchain (SAMR)[D]. Daytona Beach: Embry-Riddle Aeronautical University, 2018. |
34 | RAJKOV D. Blockchain for aircraft spare part management: Evaluating the robustness of the maintenance, repair and overhaul business model[D]. Delft :Delft University of Technology,2018. |
35 | 王宁, 王煜, 张志雄. 区块链技术航空应用与发展展望[J]. 航空科学技术, 2020, 31(6): 7-13. |
WANG N, WANG Y, ZHANG Z X. Application and development of blockchain technology in aviation[J]. Aeronautical Science & Technology, 2020, 31(6): 7-13 (in Chinese). | |
36 | 韦 译. 5G时代虚拟现实和增强现实的发展[J]. 广西通信技术, 2019(1): 1-4, 14. |
WEI Y. The development of VR and AR technology in 5G era[J]. Guangxi Communication Technology, 2019(1): 1-4, 14 (in Chinese). | |
37 | 郭子豪, 邢诗怡, 王宇, 等. 基于AR技术的飞机维修可视化远程协助系统研究[J]. 自动化应用, 2019(10): 129-130, 133. |
GUO Z H, XING S Y, WANG Y, et al. Research on aircraft maintenance visualization remote assistance system based on AR technology[J]. Automation Application, 2019(10): 129-130, 133 (in Chinese). | |
38 | VILJAKAINEN T.Adoption of augmented reality solutions in field engineering and maintenance-Drivers and barriers for organizations[D]. Helsinki:Arcada University of Applied Sciences,2020. |
39 | 马静华, 刘晓庆, 刘鲁秦. 大数据将怎样改变人类的未来[J]. 大飞机, 2017(11): 12-16. |
MA J H, LIU X Q, LIU L Q. How will big data change the future of mankind?[J]. Jetliner, 2017(11): 12-16 (in Chinese). | |
40 | 孔祥芬, 蔡峻青, 张利寒, 等. 大数据在航空系统的研究现状与发展趋势[J]. 航空学报, 2018, 39(12): 022311. |
KONG X F, CAI J Q, ZHANG L H, et al. Research status and development trend of big data in aviation system[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 022311 (in Chinese). | |
41 | 孟松鹤, 叶雨玫, 杨强, 等. 数字孪生及其在航空航天中的应用[J]. 航空学报, 2020, 41(9): 023615. |
MENG S H, YE Y M, YANG Q, et al. Digital twin and its aerospace applications[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 023615 (in Chinese). | |
42 | 赵亮, 高龙, 陶剑. 数字孪生技术在航空产品寿命预测中的应用[J]. 国防科技工业, 2019(5): 42-44. |
ZHAO L, GAO L, TAO J. Application of digital twin technology in life prediction of aviation products[J]. Defence Science & Technology Industry, 2019(5): 42-44 (in Chinese). | |
43 | 朱璞, 李侯君, 陈进文, 等. 紫外光固化复合材料修复铝合金板力学性能研究[C]∥第二十一届全国玻璃钢/复合材料学术年会. 2016: 61-65. |
ZHU P, LI H J, CHEN J W, et al. Study on mechanical properties of aluminum alloy plate repaired by UV curing composite[C]∥ 21st Annual Academic Conference on FRP/CM. 2016: 61-65 (in Chinese). | |
44 | GUTIERREZ D F M. Environmental characterization of VARTM repair technology[D]. West Lafayette: Purdue University, 2012. |
45 | 夏仁波, 苏润, 赵吉宾, 等. 飞机表面制造质量智能检测方法研究[J]. 自动化博览, 2019, 36(5): 38-41. |
XIA R B, SU R, ZHAO J B, et al. Research on intelligent detection method of aircraft surface manufacturing quality[J]. Automation Panorama, 2019, 36(5): 38-41 (in Chinese). | |
46 | 俞凯, 徐志兵, 郝顺义. 新型飞机的故障诊断维修体系研究[J]. 现代电子技术, 2013, 36(23): 9-12, 15. |
YU K, XU Z B, HAO S Y. Research on fault diagnosis and maintenance system for new aircraft[J]. Modern Electronics Technique, 2013, 36(23): 9-12, 15 (in Chinese). | |
47 | 贾立山, 刘喆, 孙毅. 基于RMBP神经网络的飞机电气故障智能诊断[J]. 系统仿真学报, 2018, 30(9): 3493-3501, 3513. |
JIA L S, LIU Z, SUN Y. Intelligent diagnosis of aircraft electrical faults based on RMBP neural network[J]. Journal of System Simulation, 2018, 30(9): 3493-3501, 3513 (in Chinese). | |
48 | 张新苗, 余自武, 杨雨绮. 人工智能在波音787上的应用与思考[J]. 工业工程与管理, 2017, 22(6): 169-174. |
ZHANG X M, YU Z W, YANG Y Q. Application and consideration to Boeing 787 influenced by artificial intelligence[J]. Industrial Engineering and Management, 2017, 22(6): 169-174 (in Chinese). | |
49 | 徐忠明. 以“新基建”开创航空维修“新业态”[J]. 航空维修与工程, 2020(6): 15-18. |
XU Z M. Create a new MRO business form with new infrastructure construction[J]. Aviation Maintenance & Engineering, 2020(6): 15-18 (in Chinese). |
/
〈 |
|
〉 |