Special Topic: Application of Fault Diagnosis Technology in Aerospace Field

Review of research on self-excited vibration of aviation spline-rotor system

  • LI Yingjie ,
  • ZHAO Guang ,
  • WU Xueshen ,
  • LI Jian ,
  • YUAN Wei ,
  • MEI Qing
Expand
  • 1. School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China;
    2. Aviation Military Representative Office of the Army Equipment Department Aviation Representative Office in Zhuzhou, Zhuzhou 412000, China;
    3. AECC Hunan Aviation Powerplant Research Institute, Zhuzhou 412002, China

Received date: 2021-03-18

  Online published: 2021-08-03

Supported by

the Fundamental Research Funds for the Central Universities (DUT16 JJ (G04));National Science and Technology Major Projects (779608000000200007)

Abstract

In high-power and high-speed rotor systems represented by aerospace power transmission, splines play an irreplaceable role. Due to the limitation of structure, weight and space of the aviation power transmission rotor, many splines can only operate in grease lubricated or non-lubricated environment. The load and service environment of the spline cause it to be in a state of complex contact and fretting for a long time. When the rotor runs after the critical speed, the spline boundary lubrication or misalignment state may induce the spline’s self-excited vibration. When spline self-excited vibration occurs, there will be low-frequency amplitude, the low-frequency amplitude is high, and the energy is large, which is easy to cause serious damage or accidents. Domestic and foreign scholars have carried out certain research work on spline self-excited vibration, and formed a consensus that internal friction damping causes spline self-excited vibration, and proposed measures to alleviate spline self-excited vibration. This paper, by reviewing the research history and current situation of spline friction damping and spline-rotor system self-excited vibration, summarizes the characteristics and influencing factors of spline self-excited vibration. Then we try to give the development trend of spline friction damping and self-excited vibration, and provide a reference for the stable and reliable service of the spline in the aviation power transmission.

Cite this article

LI Yingjie , ZHAO Guang , WU Xueshen , LI Jian , YUAN Wei , MEI Qing . Review of research on self-excited vibration of aviation spline-rotor system[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(8) : 625532 -625532 . DOI: 10.7527/S1000-6893.2021.25532

References

[1] 陈予恕. 旋转机械发展中的若干非线性动力学问题[C]//中国力学学会学术大会2009论文摘要集. 郑州: 郑州大学, 2009: 1. CHEN Y S. Some nonlinear dynamics problems in the development of rotating machinery[C]//Abstract Collection of 2009 Papers of the Academic Conference of the Chinese Society of Mechanics. Zhengzhou: Zhengzhou University, 2009: 1 (in Chinese).
[2] BROWN H W. A reliable spline coupling[J]. Journal of Engineering for Industry, 1979, 101(4): 421-426.
[3] 王永亮, 赵广, 孙绪聪, 等. 航空花键研究综述[J]. 航空制造技术, 2017, 60(3): 91-100. WANG Y L, ZHAO G, SUN X C, et al. Review on research of aviation spline[J]. Aeronautical Manufacturing Technology, 2017, 60(3): 91-100(in Chinese).
[4] WALTON J, ARTILES A, LUND J, et al. Internal rotor friction instability: MTI-88TR39[R]. Alabama: National Aeronautics and Space Administration, 1990.
[5] KUSHUL M Y. The self-induced oscillations of rotors[M]. New York: Consultants Bureau, 1964: 5.
[6] GUNTER E J. Dynamic stability of rotor bearing systems: NASA SP-113[R]. Washington, D.C.: National Aeronautics and Space Administration, 1967.
[7] NIKOLAJSEN J L. Spline instability in high speed rotors: AD-A238 666[R]. Texas: U.S. Army Research Office, 1991.
[8] 康丽霞, 曹义华, 梅庆. 直升机传动系统花键连接轴的动力失稳[J]. 北京航空航天大学学报, 2010, 36(6): 645-649. KANG L X, CAO Y H, MEI Q. Dynamic instability of helicopter transmission rotating shafts with spline coupling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(6): 645-649(in Chinese).
[9] 沈心敏, 刘雨川, 马纲. 航空燃气轮机摩擦学[M]. 北京:北京航空航天大学出版社, 2008: 319. SHEN X M, LIU Y C, MA G. Tribology for aero-gas turbine engines[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2008: 319(in Chinese).
[10] BO L C, PAVELESCU D. The friction-speed relation and its influence on the critical velocity of stick-slip motion[J]. Wear, 1982, 82(3): 277-289.
[11] KARNOPP D. Computer simulation of stick-slip friction in mechanical dynamic systems[J]. Journal of Dynamic Systems Measurement and Control, 1985, 107(1): 100-103.
[12] CANUDAS C D W, OLSSIN H, ASTROM K J, et al. A new model for control of systems with friction[J]. IEEE Transactions on Automatic Control, 1995, 40(3): 419-425.
[13] 高腾. 花键连接转子系统稳定性研究[D]. 上海: 上海交通大学, 2016: 32-33. GAO T. Research on the stability of spline connected rotor system[D]. Shanghai: Shanghai Jiao Tong University, 2016: 32-33(in Chinese).
[14] BENEDICT G, KELLY B W. Instantaneous coefficients of gear tooth friction[J]. ASLE Transactions, 1961, 4(1), 59-70.
[15] KU C P R, JR J F W, LUND J W. Dynamic coefficients of axial spline couplings in high-speed rotating machinery[J]. Journal of Vibration and Acoustics, 1994, 116(3): 250-256.
[16] MARMOL R A, SMALLEY A J, TECZA J A. Spline coupling induced nonsynchronous rotor vibrations[J]. Journal of Mechanical Design, 1980, 102(1): 168-176.
[17] RATSIMBA C H H, MCCOLL I R, WILLIAMS E J, et al. Measurement, analysis and prediction of fretting wear damage in a representative aeroengine spline coupling[J]. Wear, 2004, 257(11): 1193-1206.
[18] HOUGHTON D, WAVISH P M, WILLIAMS E J, et al. Improved correlation of measured and predicted hysteresis loops in a multiaxial fretting fatigue test rig for spline couplings[J]. Applied Mechanics and Materials, 2007, 7-8: 37-42.
[19] 薛向珍, 霍启新, 郑甲红, 等. 基于齿向修形的航空渐开线花键副抗微动磨损研究[J]. 中国机械工程, 2019, 30(20): 2447-2455, 2479. XUE X Z, HUO Q X, ZHENG J H, et al. Investigation on improving fretting wears of aeroengine involute spline couplings based on tooth profile modification[J]. China Mechanical Engineering, 2019, 30(20): 2447-2455, 2479(in Chinese).
[20] XUE X Z, WANG S M, LI B. Modification methodology of fretting wear in involute spline[J]. Wear, 2016, 368-369: 435-444.
[21] PARK S K. Determination of loose spline coupling coefficients of rotor bearing systems in turbomachinery[D]. Texas: Texas A & M University, 1991: 103-170.
[22] ADRIEN B, MANUEL P, MARC S. Determining both radial pressure distribution and torsional stiffness of involute spline couplings[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2006, 220(12): 1727-1738.
[23] BARROT A, SARTOR M, PAREDES M. Investigation of torsional teeth stiffness and second moment of area calculations for an analytical model of spline coupling behaviour[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2008, 222(6): 891-902.
[24] BARROT A, PAREDES M, SARTOR M. Extended equations of load distribution in the axial direction in a spline coupling[J]. Engineering Failure Analysis, 2009, 16(1): 200-211.
[25] ROBINS R R. Tooth engagement evaluation of involute spline couplings[D]. Provo: Brigham Young University, 2008: 19-26.
[26] CHASE K W, SORENSEN C D, DECAIRES B J K. Variation analysis of tooth engagement and loads in involute splines[J]. IEEE Transactions on Automation Science and Engineering, 2010, 7(4): 746-754.
[27] CURA F, MURA A. Experimental procedure for the evaluation of tooth stiffness in spline coupling including angular misalignment[J]. Mechanical Systems and Signal Processing, 2013, 40(2): 545-555.
[28] 朱彬, 杨诚, 刘烨辉, 等. 套齿连接结构力学模型及其刚度影响因素[J]. 机械设计与制造, 2019(增刊1): 86-90, 94. ZHU B, YANG C, LIU Y H, et al. Mechanical modeling for the spline joint and the influence factors investigation for its stiffness[J]. Machinery Design and Manufacture, 2019(S1): 86-90, 94(in Chinese).
[29] 彭和平, 李志明. 扭杆弹簧端部花键承载能力与加工精度间数值关系的研究[J]. 机械, 2004, 31(5): 20-23,38. PENG H P, LI Z M. A research on the numerical relations between the load capacity and making precision of spline on the ends of torsion bar spring[J]. Machinery, 2004, 31(5): 20-23,38(in Chinese).
[30] CURA F, MURA A, GRAVINA M. Load distribution in spline coupling teeth with parallel offset misalignment[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2013, 227(10): 2195-2205.
[31] HONG J, TALBOT D, KAHRAMAN A. A semi-analytical load distribution model for side-fit involute splines[J]. Mechanism and Machine Theory, 2014, 76: 39-55.
[32] BAKER J G. Self-induced vibrations[J]. Journal of Applied Mechanics of the ASME, 1933, 1(1): 5-12.
[33] ENRICH F F. Shaft whirl induced by rotor internal damping[J]. Journal of Applied Mechanics, 1964, 6: 279-282.
[34] WILLIAMS R, TRENT R. The effect of nonlinear asymmetric supports on turbine engine rotor stability[J]. SAE Transactions, 1970, 79: 1010-1020.
[35] VANCE J M, LEE J. Stability of high speed rotors with internal friction[J]. Journal of Engineering for Industry-Transactions of the AMSE, 1974, 96(3): 960-968.
[36] MARMOL R A. Engine rotor dynamics, synchronous and nonsynchronous whirl control: USARTL-TR-79-2[R]. Florida: Army Research and Technology Labs, 1979.
[37] BENTLY D E, MUSZYNSKA A. Rotor internal friction instability N86-30187[R]. Cleveland: NASA. Lewis Research Center Instability in Rotating Machinery, 1985.
[38] NATARAJ C, NELSON H D, ARAKERE N. Effect of coulomb spline on rotor dynamic response: N86-30160[R]. Cleveland: NASA. Lewis Research Center Instability in Rotating Machinery, 1985.
[39] ARTILES A F. The effects of friction in axial splines on rotor system stability[J]. Journal of Engineering for Gas Turbines and Power, 1993, 115(2): 272-278.
[40] BACHSCHMID N, CURAMI A, PETRONE F. Vibrational behaviour of rotors with gear couplings in case of insufficient coupling lubrication[M]. London: Springer, 1992: 232-233.
[41] AL-HUSSAIN K M. Dynamic stability of two rigid rotors connected by a flexible coupling with angular misalignment[J]. Journal of Sound and Vibration, 2003, 266(2): 217-234.
[42] BROMMUNDT E, KRAMER E. Instability and self-excitation caused by a gear coupling in a simple rotor system[J]. Forschung Im Ingenieurwesen-engineering Research, 2005, 70(1): 25-37.
[43] 赵广. 转子-联轴器-轴承-隔振器系统耦合动力学特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2009: 93-103. ZHAO G. Study on coupled dynamics of rotor-coupling-bearing-isolator system[D]. Harbin: Harbin Institute of Technology, 2009: 93-103 (in Chinese).
[44] ZHAO G, LIU Z S, CHEN F. Meshing force of misaligned spline coupling and the influence on rotor system[J]. International Journal of Rotating Machinery, 2008, 2008: 1-8.
[45] 赵广, 刘占生, 陈锋, 等. 花键联轴器对转子-轴承系统稳定性影响研究[J]. 振动工程学报, 2009, 22(3): 280-286. ZHAO G, LIU Z S, CHEN F, et al. Influences of spline coupling on stability of rotor-bearing system[J]. Journal of Vibration Engineering, 2009, 22(3): 280-286(in Chinese).
[46] 赵广, 龙鑫, 葛存飞, 等. 联轴器对转子-轴承系统稳定性影响[C]//第9届全国转子动力学学术讨论会ROTDYN’ 2010论文集. 贵阳: 中国振动工程学会, 2010: 3. ZHAO G, LONG X, GE C F, et al. Study on stability of rotor-bearing systems with different types of coupling[C]//Proceedings of the 9th National Symposium on Rotor Dynamics ROTDYN’ 2010. Guiyang: Chinese Society of Vibration Engineering, 2010: 3 (in Chinese).
[47] 薛向珍, 王三民, 袁茹. 渐开线花键连接的非线性动力学特性[J]. 哈尔滨工业大学学报, 2015, 47(1): 107-111. XUE X Z, WANG S M, YUAN R. Nonlinear dynamic characteristics of involute spline couplings[J]. Journal of Harbin Institute of Technology, 2015, 47(1): 107-111(in Chinese).
[48] 高腾, 荆建平, 梅庆, 等. 花键连接转子系统稳定性研究[J]. 噪声与振动控制, 2016, 36(2): 40-45. GAO T, JING J P, MEI Q, et al. Stability analysis of spline connected rotor system[J]. Noise and Vibration Control, 2016, 36(2): 40-45(in Chinese).
[49] ZHU H M, CHEN W F, ZHU R P, et al. Modelling and dynamic analysis of spline-connected multi-span rotor system[J]. Meccanica, 2020, 55(6): 1413-1433.
[50] MONTAGNIER O, HOCHARD C. Dynamic instability of supercritical driveshafts mounted on dissipative supports-effects of viscous and hysteretic internal damping[J]. Journal of Sound and Vibration, 2007, 305(3): 378-400.
[51] VATTA F, VIGLIANI A. Internal damping in rotating shafts[J]. Mechanism and Machine Theory, 2008, 43(11): 1376-1384.
[52] DIMENTBERG M F. Vibration of a rotating shaft with randomly varying internal damping[J]. Journal of Sound and Vibration, 2005, 285(3): 759-765.
[53] 李明, 姜培林, 虞烈. 轴承-转子-齿轮联轴器系统的振动研究[J]. 机械工程学报, 1998, 34(3): 39-45. LI M, JIANG P L, YU L. Research on vibration of bearing-rotor-gear coupling system[J]. Journal of Mechanical Engineering, 1998, 34(3): 39-45 (in Chinese).
[54] LI M, YU L. Analysis of the coupled lateral torsional vibration of a rotor-bearing system with a misaligned gear coupling[J]. Journal of Sound and Vibration, 2001, 243(2): 283-300.
[55] 梅庆, 力宁. 弹性联轴器动力特性分析与实验研究[J]. 振动与冲击, 2008, 27(6): 128-131, 192. MEI Q, LI N. Dynamic characteristics analysis and test of an elastic coupling[J]. Journal of Vibration and Shock, 2008, 27(6): 128-131, 192(in Chinese).
[56] 陈曦, 廖明夫, 李全坤. 带套齿联轴器的转子系统动力学特性研究[J]. 推进技术, 2015, 36(7): 1069-1077. CHEN X, LIAO M F, LI Q K. Dynamic characteristics of a rotor system with a spline coupling[J]. Journal of Propulsion Technology, 2015, 36(7): 1069-1077(in Chinese).
[57] LIU S G, MA Y H, ZHANG D Y, et al. Studies on dynamic characteristics of the joint in the aero-engine rotor system[J]. Mechanical Systems and Signal Processing, 2012, 29: 120-136.
[58] LIU S G, WANG J, HONG J, et al. Dynamics design of the aero-engine rotor joint structures based on experimental and numerical study[C]//Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air. 2010: 49-60.
Outlines

/