Electrochemical Machining (ECM) is a non-contact machining process, the final machining accuracy of which is significantly influenced by the feed direction of cathodes. Since the hub surface of the diffuser with oblique blades is distorted, a comprehensive optimization method of cathode feed direction based on genetic algorithm is proposed for electrochemical machining of the blade surface. In this method, the maximum angle and the gap variance between the cathode side and the hub surface are taken as the evaluation indexes of the genetic algorithm. Under the condition that the maximum angle is relatively small, the gap distribution between the cathode side and the hub surface is more uniform, so as to avoid the phenomenon of uneven margin or overcut on the hub surface. To verify the effectiveness of the optimization method, the fixture is designed based on the optimization results, and the electrochemical machining experiment of diffusers is carried out. The results showed that the machining error of blade surface is less than 0.12 mm, and there is no overcut on the hub surface. The electrochemical precision machining of the diffuser is realized.
ZHAO Jingbo
,
XU Zhengyang
,
LIU Qiang
. Optimization and experimental study of cathode feed direction in electrochemical machining of twist diffuser surface[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022
, 43(4)
: 525570
-525570
.
DOI: 10.7527/S1000-6893.2021.25570
[1] 朱荻. 国外电解加工的研究进展[J]. 电加工与模具, 2000(1):11-16. ZHU D. The latest advances and the principal issues in ECM[J]. Electromachining & Mould, 2000(1):11-16(in Chinese).
[2] RAJURKAR K P, ZHU D, MCGEOUGH J A, et al. New development in ECM[J]. Annals of CIRP, 1999, 48(2):567-579.
[3] WALTHER B, SCHILM J, MICHAELIS A, et al. Electrochemical dissolution of hard metal alloys[J]. Electrochimica Acta, 2007, 52(27):7732-7737.
[4] ZHANG J C, XU Z Y, ZHU D, et al. Study of tool trajectory in blisk channel ECM with spiral feeding[J]. Materials and Manufacturing Processes, 2017, 32(3):333-338.
[5] TANG L, GAN W M. Utilization of flow field simulations for cathode design in electrochemical machining of aerospace engine blisk channels[J]. The International Journal of Advanced Manufacturing Technology, 2014, 72(9-12):1759-1766.
[6] KLOCKE F, ZEIS M, KLINK A, et al. Experimental research on the electrochemical machining of modern titanium- and nickel-based alloys for aero engine components[J]. Procedia CIRP, 2013, 6:368-372.
[7] KOZAK J, BUDZYNSKI A F, DOMANOWSKI P. Computer simulation electrochemical shaping (ECM-CNC) using a universal tool electrode[J]. Journal of Materials Processing Technology, 1998, 76(1-3):161-164.
[8] WANG D Y, ZHU Z W, WANG H R, et al. Convex shaping process simulation during counter-rotating electrochemical machining by using the finite element method[J]. Chinese Journal of Aeronautics, 2016, 29(2):534-541.
[9] WANG D Y, ZHU Z W, BAO J, et al. Reduction of stray corrosion by using iron coating in NaNO3 solution during electrochemical machining[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(5-8):1365-1370.
[10] 张明岐, 张志金, 黄明涛. 航空发动机压气机整体叶盘电解加工技术[J]. 航空制造技术, 2016, 59(21):86-92. ZHANG M Q, ZHANG Z J, HUANG M T. Electrochemical machining technology of aeroengine compressor blisk[J]. Aeronautical Manufacturing Technology, 2016, 59(21):86-92(in Chinese).
[11] ZHU Y W, XU J W. Precise numerical control electrochemical machining for integral impeller with the adding wobbly feeds[J]. Advanced Materials Research, 2011, 317-319:440-445.
[12] HU X Y, ZHU D, LI J B, et al. Flow field research on electrochemical machining with gas film insulation[J]. Journal of Materials Processing Technology, 2019, 267:247-256.
[13] GU Z Z, ZHU W G, ZHENG X H, et al. Cathode tool design and experimental study on electrochemical trepanning of blades[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(1-4):857-863.
[14] WANG H, ZHU D, LIU J. Improving the accuracy of the blade leading/trailing edges by electrochemical machining with tangential feeding[J]. CIRP Annals, 2019, 68(1):165-168.
[15] 刘嘉, 徐正扬, 万龙凯, 等. 整体叶盘型面电解加工阴极进给方向优化及试验研究[J]. 机械工程学报, 2014, 50(7):146-153. LIU J, XU Z Y, WAN L K, et al. Optimization and experiment of cathode feeding direction in electrochemical machining of blisk[J]. Journal of Mechanical Engineering, 2014, 50(7):146-153(in Chinese).
[16] XU Z Y, LIU J, XU Q, et al. The tool design and experiments on electrochemical machining of a blisk using multiple tube electrodes[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(1-4):531-539.
[17] WANG J, XU Z Y, WANG J T, et al. Electrochemical machining on blisk channels with a variable feed rate mode[J]. Chinese Journal of Aeronautics, 2021, 34(6):151-161.
[18] 徐正扬, 朱荻, 王蕾, 等. 叶片电解加工三头柔性进给方向优化设计[J]. 中国机械工程, 2007, 18(24):2921-2925. XU Z Y, ZHU D, WANG L, et al. Optimization of cathode feeding direction with flexible 3-electrode feeding method in ECM of turbine blades[J]. China Mechanical Engineering, 2007, 18(24):2921-2925(in Chinese).
[19] 陈学振, 徐正扬, 朱荻. 整体叶盘电解加工全过程电流控制方法研究[J]. 电加工与模具, 2016(2):25-30. CHEN X Z, XU Z Y, ZHU D. Study on current control of whole process in electrochemical machining of blisk[J]. Electromachining & Mould, 2016(2):25-30(in Chinese).
[20] ZHU D, ZHU D, XU Z Y. Optimal design of the sheet cathode using W-shaped electrolyte flow mode in ECM[J]. The International Journal of Advanced Manufacturing Technology, 2012, 62(1-4):147-156.
[21] 张明岐, 傅军英. 高温合金整体叶盘精密振动电解加工方法的应用分析[J]. 航空制造技术, 2009, 52(22):26-29. ZHANG M Q, FU J Y. Application analysis of precise vibrating electrochemical machining in high-temperature alloy disk[J]. Aeronautical Manufacturing Technology, 2009, 52(22):26-29(in Chinese).