Considering the randomness of working stress and residual strength, this article develops a stress-residual strength interference model for probabilistic assessment on damage tolerance of the aircraft composite structure. The stochastic factors including working stress, damage size, initial strength and fatigue limit of the composite helicopter horizontal tail structure are statistically analyzed. Based on the residual strength model considering the effect of damage size, the failure probability of composite helicopter horizontal tail structure is evaluated using the Monte-Carlo method. The results indicate that the proposed probabilistic damage tolerance assessment method for the aircraft composite structure is feasible. The effects of various stochastic factors during manufacture and service of the composite structure on residual strength are taken into consideration, which are consistent with the actual situation. It is found that the damage type and damage repair efficiency have significant influence on the failure probability of the structure. The through-thickness damage has more adverse effect on the reliability of the structure than the delamination damage. The failure probability of the structure decreases with the increase of repair efficiency.
[1] Federal Aviation Administration. Composite aircraft structure:AC20-107B[R]. Washington, D.C.:Federal Aviation Administration, 2010:11-18.
[2] Society of Automotive Engineers. Composite materials handbook, Volume 3-Polymer matrix composites materials usage, design, and analysis:Handbook-MIL-HDBK 17-3F[S]. Warrendale:Society of Automotive Engineers, 2002.
[3] 陈普会, 肖闪闪. 飞机复合材料结构的概率设计方法[J]. 南京航空航天大学学报, 2012, 44(5):683-693. CHEN P H, XIAO S S. Probabilistic design methodology for composite aircraft structure[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(5):683-693(in Chinese).
[4] HUANG C, LIN K E. A method for reliability assessment of aircraft structures subject to accidental damage[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2005:1830.
[5] LIN K, DU J J, DAVID R. Structural design methodology based on concepts of uncertainty[R]. Washington, D.C.:NASA, 2000.
[6] AFSHARI S S, POURTAKDOUST S H, CRAWFORD B J, et al. Time-varying structural reliability assessment method:application to fiber reinforced composites under repeated impact loading[J]. Composite Structures, 2021, 261:113287.
[7] 邵传金, 左洪福, 陆晓华, 等. 民机复合材料典型结构件检修间隔的概率分析[J]. 航空计算技术, 2017, 47(4):76-79. SHAO C J, ZUO H F, LU X H, et al. Probabilistic analysis method for typical structural inspection interval of civil aircraft composites[J]. Aeronautical Computing Technique, 2017, 47(4):76-79(in Chinese).
[8] CARDOSO J B, DE ALMEIDA J R, DIAS J M, et al. Structural reliability analysis using Monte Carlo simulation and neural networks[J]. Advances in Engineering Software, 2008, 39(6):505-513.
[9] CHIACHIO M, CHIACHIO J, RUS G. Reliability in composites-A selective review and survey of current development[J]. Composites Part B:Engineering, 2012, 43(3):902-913.
[10] IBRAHIM Y. Observations on applications of importance sampling in structural reliability analysis[J]. Structural Safety, 1991, 9(4):269-281.
[11] KAYMAZ I, MCMAHON C A. A response surface method based on weighted regression for structural reliability analysis[J]. Probabilistic Engineering Mechanics, 2005, 20(1):11-17.
[12] DODWELL T J, KYNASTON S, BUTLER R, et al. Multilevel Monte Carlo simulations of composite structures with uncertain manufacturing defects[J]. Probabilistic Engineering Mechanics, 2021, 63:103116.
[13] 刘成龙, 周金宇, 邱睿, 等. 复合材料层合板终层失效概率分析的通用生成函数法[J]. 机械强度, 2020, 42(2):350-356. LIU C L, ZHOU J Y, QIU R, et al. Probability analysis on last ply failure of composite laminates based on universal generating function method[J]. Journal of Mechanical Strength, 2020, 42(2):350-356(in Chinese).
[14] GARY P, RISKALLA M. Development of probabilistic design methodology for composite structures:DOT/FAA/AR-95/17[R]. Alexandria:National Technical Information Service, 1997.
[15] KAN H P, CORDERO R, WHITEHEAD R S. Advanced certification methodology for composite structures:NAWCAOPAX-96-262-TR[R]. Washington,D.C.:Naval Air Warfare Center-Aircaft Division Department of the Nary, 1997.
[16] SHIAO M. Evaluation of the probabilistic design methodology and computer code for composite structures:DOT/FAA/AR-99/12[R]. Alexandria:National Technical Information Service, 2001.
[17] USHAKOV A, STEWART A, MISHULIN I, et al. Probabilistic design of damage tolerant composite aircraft structures:DOT/FAA/AR-01/55[R]. Alexandria:National Technical Information Service, 2002.
[18] 梁鹏. 直升机尾部升力面组合设计方法研究[D]. 南京:南京航空航天大学, 2012. LIANG P. Research on the helicopter empennage combinatorial design[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
[19] KIM S Y, KOO J M, KIM D W, et al. Prediction of the static fracture strength of hole notched plain weave CFRP composites[J]. Composites Science and Technology, 2011, 71(14):1671-1676.
[20] KHECHAI A, TATI A, GUERIRA B, et al. Strength degradation and stress analysis of composite plates with circular, square and rectangular notches using digital image correlation[J]. Composite Structures, 2018, 185:699-715.
[21] ZHAO L B, LIU Y L, HONG H M, et al. Compressive failure analysis for low length-width ratio composite laminates with embedded delamination[J]. Composites Communications, 2018, 9:17-21.
[22] WAN A S, XU Y G, XIONG J J. Notch effect on strength and fatigue life of woven composite laminates[J]. International Journal of Fatigue, 2019, 127:275-290.
[23] WAN A S, XIONG J J, XU Y G. Fatigue life prediction of woven composite laminates with initial delamination[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(9):2130-2146.
[24] American Society of Testing Materials. Standard test method for open-hole tensile strength of polymer matrix composite laminates:ASTM-D5766-D5766M-11[S]. Washington, D.C.:American Society of Testing Materials, 2011.
[25] American Society of Testing Materials. Standard test method for open-hole compressive strength of polymer matrix composite laminates:ASTM D6484/D6484M-20[S]. Washington, D.C.:American Society of Testing Materials, 2009.
[26] 高镇同, 熊峻江. 疲劳可靠性[M]. 北京:北京航空航天大学出版社, 2000. GAO Z T, XIONG J J. Fatigue reliability[M]. Beijing:Beijing University of Aeronautics & Astronautics Press, 2000(in Chinese).
[27] 李湘郡, 李彦斌, 郭飞, 等. C/C复合材料的压缩强度分布与可靠性评估[J]. 航空学报, 2019, 40(8):222853. LI X J, LI Y B, GUO F, et al. Compression strength distribution and reliability assessment of C/C composites[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):222853(in Chinese).
[28] 穆志韬, 曾本银, 金平. 直升机结构疲劳[M]. 北京:国防工业出版社, 2009. MU Z T, ZENG B Y, JIN P. Fatigue of helicopter structures[M]. Beijing:National Defense Industry Press, 2009(in Chinese).
[29] 熊峻江. 疲劳断裂可靠性工程学[M]. 北京:国防工业出版社, 2008. XIONG J J. Fatigue and fracture reliability engineering[M]. Beijing:National Defense Industry Press, 2008(in Chinese).
[30] BERENS A P. Probability of detection (POD) analysis for the advanced retirement for cause (RFC)/engine structural integrity program (ENSIP) nondestructive evaluation (NDE) system-volume 1:Pod analysis[R]. Dayton:University of Dayton, 2000.