Articles

Test on electrolytic modification of cross hole intersection

  • SHEN Zhenyu ,
  • FU Xiuqing ,
  • WANG Qingqing ,
  • ZHANG Hongwen ,
  • ZHANG Cheng ,
  • TAO Yichen ,
  • LI Jia ,
  • GU Yanqing
Expand
  • 1. College of Engineering, Nanjing Agricultural University, Nanjing 210031, China;
    2. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    3. School of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China

Received date: 2021-03-29

  Revised date: 2021-04-22

  Online published: 2021-07-09

Supported by

Jiangsu Agricultural Science and Technology Innovation Fund(CX (20) 3085);the Fundamental Research Funds for the Central Universities(KYXJ202002);Innovative Development Special Project of Shihezi University(CXFZ202015);High-level Talents Research Start-up Fund Project of Nanjing Agricultural University(104-804003)

Abstract

To improve the fuel efficiency of the engine, prolong the service life of the fuel injection body and reduce the maintenance cost, the electrochemical machining technology and the cathode of the intersecting structure were used to conduct the experimental research on deburring and transition arc modification at the intersection of the cross holes in the fuel injection body. After modification, the radius of the transition arc at the intersecting area was R=(2.0±0.2) mm. The mathematical model of electrolytic modification process at the intersection of the cross holes was established. The numerical solution of electrochemical modification process under different machining time and voltage was carried out based on COMSOL. The process test of electrolytic modification process at the intersection of cross holes was carried out, and the transition arc radius obtained from numerical solution and modification test under the same process parameters was compared and analyzed to verify the accuracy of the mathematical model of the modification process. Moreover the change rule of the transition arc radius at the intersection with the processing time and voltage was obtained. The results show that when the machining time is t=360 s and the machining voltage is U=12 V, and when the machining time is t=420 s and the machining voltage is U=10 V, the transition arc radius obtained from the numerical solution and the modification test can meet the requirements of the transition arc radius R=(2.0±0.2) mm, and the contour of the transition arc is obvious at the intersection of the cross holes after the modification.

Cite this article

SHEN Zhenyu , FU Xiuqing , WANG Qingqing , ZHANG Hongwen , ZHANG Cheng , TAO Yichen , LI Jia , GU Yanqing . Test on electrolytic modification of cross hole intersection[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(4) : 525592 -525592 . DOI: 10.7527/S1000-6893.2021.25592

References

[1] 戴沅均. 航空发动机机械磨损的故障探析[J]. 中国设备工程, 2017(24):26-27. DAI Y J. Probing into the failure of aero-engine mechanical wear[J]. China Plant Engineering, 2017(24):26-27(in Chinese).
[2] 张磊, 于锦禄, 陈一, 等. 基于滑动弧的航空发动机燃烧室头部喷雾特性[J]. 航空学报, 2021, 42(3):124308. ZHANG L, YU J L, CHEN Y, et al. Spray characteristics of gliding arc discharge combustion dome of areo-engine combustors[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3):124308(in Chinese).
[3] HU C H, HE L M, CHEN Y, et al. Electrical and optical characterizations of a rotating gliding arc plasma-enhanced combustion dome in an aero-engine combustor[J]. Journal of Physics D:Applied Physics, 2021, 54(20):205202.
[4] 张宝诚. 航空发动机燃烧室的现状和发展[J]. 航空发动机, 2013, 39(6):67-73. ZHANG B C. Status and development of aeroengine combustors[J]. Aeroengine, 2013, 39(6):67-73(in Chinese).
[5] 田凤欣. 燃油调节器复杂壳体去毛刺方法研究[J]. 航空精密制造技术, 2013, 49(4):45-47. TIAN F X. Deburring methods study for complicated body of fuel control unit[J]. Aviation Precision Manufacturing Technology, 2013, 49(4):45-47(in Chinese).
[6] 骆彬, 张开富, 李原, 等. 钛板刚度对钻削轴向力和出口毛刺的影响[J]. 航空学报, 2016, 37(7):2321-2330. LUO B, ZHANG K F, LI Y, et al. Influence of stiffness on thrust force and exit burr in drilling titanium plates[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2321-2330(in Chinese).
[7] 石洪国, 王福海, 丁志纯, 等. 钻削微小孔技术在航空发动机燃油喷嘴喷口加工中的应用研究[J]. 航空制造技术, 2020, 63(13):92-96. SHI H G, WANG F H, DING Z C, et al. Research on application of micro-hole drilling technology in processing of aero-engine fuel nozzles[J]. Aeronautical Manufacturing Technology, 2020, 63(13):92-96(in Chinese).
[8] 刘志刚. 精密接头磨料流光整加工机理与工艺研究[D]. 南京:南京航空航天大学, 2019:1-8. LIU Z G. Research on mechanism and technology of machining precision joint by abrasive flow machining[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2019:1-8(in Chinese).
[9] 高航, 袁业民, 陈建锋, 等. 航空发动机整体叶盘磨料水射流开坯加工技术研究进展[J]. 航空学报, 2020, 41(2):623319. GAO H, YUAN Y M, CHEN J F, et al. Research progress of abrasive water jet blanking technology for aero-engine integral blade[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):623319(in Chinese).
[10] 张汉辰. 基于空化效应的超声波去毛刺机理及实验研究[D]. 太原:太原理工大学, 2015:1-9. ZHANG H C. The mechanism and experimental investigation of ultrasonic deburring based on the cavitation effects[D]. Taiyuan:Taiyuan University of Technology, 2015:1-9(in Chinese).
[11] 刘晓, 李林洮, 赵光志, 等. 运载火箭阀门交叉孔去毛刺特种加工技术[J]. 电加工与模具, 2018(6):58-61. LIU X, LI L T, ZHAO G Z, et al. Non-traditional machining deburring of valve crosshole in launch vehicles[J]. Electromachining & Mould, 2018(6):58-61(in Chinese).
[12] 沈晓安. 热能去毛刺的实验研究[J]. 航空精密制造技术, 2010, 46(4):35-37. SHEN X A. Experimental research on thermal energy deburring[J]. Aviation Precision Manufacturing Technology, 2010, 46(4):35-37(in Chinese).
[13] 王振龙, 朱保国, 田锡清. 气体介质中深小孔电火花加工技术研究[J]. 航空学报, 2007, 28(2):460-463. WANG Z L, ZHU B G, TIAN X Q. Research on dry EDM for deep and small holes[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2):460-463(in Chinese).
[14] 陈国文, 王德新, 金秀杰. 电加工技术在航空发动机制造中的应用[J]. 金属加工(冷加工), 2010(16):25-26. CHEN G W, WANG D X, JIN X J. Application of electromachining technology in aero engine manufacturing[J]. MW Metal Cutting, 2010(16):25-26(in Chinese).
[15] 丁飞, 徐正扬, 王丰, 等. 冰层辅助对电火花-电解复合穿孔的影响[J]. 航空学报, 2017, 38(5):420643. DING F, XU Z Y, WANG F, et al. Effects of aided ice layer on electrochemical discharge drilling[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5):420643(in Chinese).
[16] LEE K U, KO S L. Development of deburring tool for burrs at intersecting holes[J]. Journal of Materials Processing Technology, 2008, 201(1-3):454-459.
[17] 刘志东. 特种加工[M]. 北京:北京大学出版社, 2013:152-187. LIU Z D. Non-traditional machining[M]. Beijing:Peking University Press, 2013:152-187(in Chinese).
[18] 王少华, 朱荻. 微尺度线电极电解加工[J]. 航空学报, 2009, 30(9):1788-1794. WANG S H, ZHU D. Micro wire electrode electrochemical machining[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(9):1788-1794(in Chinese).
[19] 赵建社, 王福元, 徐家文, 等. 整体叶轮自由曲面叶片精密电解加工工艺研究[J]. 航空学报, 2013, 34(12):2841-2848. ZHAO J S, WANG F Y, XU J W, et al. Research on electrochemical machining process for fine finishing of integral impeller with free-form surface blade[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2841-2848(in Chinese).
[20] 张旭. 航空发动机叶片电解质等离子去毛刺技术的研究[D]. 哈尔滨:哈尔滨工业大学, 2016:1-5. ZHANG X. Research on electrolyte-plasma deburring technology of aircraft engine blade[D]. Harbin:Harbin Institute of Technology, 2016:1-5(in Chinese).
[21] PRABHU S, ABHISHEK KUMAR K. Mathematical modeling and hydrodynamics of electrochemical deburring process[J]. IOP Conference Series:Materials Science and Engineering, 2018, 346:012063.
[22] SARKAR S, MITRA S, BHATTACHARYYA B. Mathematical modeling for controlled electrochemical deburring (ECD)[J]. Journal of Materials Processing Technology, 2004, 147(2):241-246.
[23] 刘嘉, 徐正扬, 万龙凯, 等. 整体叶盘叶型电解加工流场设计及实验[J]. 航空学报, 2014, 35(1):259-267. LIU J, XU Z Y, WAN L K, et al. Design and experiment of electrolyte flow mode in electrochemical machining of blisk[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):259-267(in Chinese).
[24] 史兴宽, 原京庭, 任敬心, 等. 铸铁结合剂微粉金刚石砂轮的在线电解修整的试验研究[J]. 航空学报, 1997,18(5):611-614. SHI X K, YUAN J T, REN J X, et al. Experimental study on electrolytic in process dressing of cast iron bonded microabrasive diamond wheel[J]. Acta Aeronautica et Astronautica Sinica, 1997,18(5):611-614(in Chinese).
[25] 傅秀清, 沈莫奇, 林尽染, 等. 电解加工交叉孔相贯处过渡圆弧的试验研究[J]. 南京农业大学学报, 2020, 43(3):556-563. FU X Q, SHEN M Q, LIN J R, et al. Experimental study on the transition arc on the intersecting line of cross-holes by electrochemical machining[J]. Journal of Nanjing Agricultural University, 2020, 43(3):556-563(in Chinese).
[26] 傅秀清, 沈莫奇, 王清清, 等. 用于柴油发动机燃油喷射体的阴极结构和电解加工方法:CN111390310B[P]. 2021-04-02. FU X Q, SHEN M Q, WANG Q Q, et al. Cathode structure for diesel engine fuel injection body and electrolytic machining method:CN111390310B[P]. 2021-04-02(in Chinese).
[27] 王清清. 交叉孔相贯处电解修型试验研究[D]. 南京:南京农业大学, 2020:19-30. WANG Q Q. Experimental study on electrolytic repair of cross hole intersection[D]. Nanjing:Nanjing Agricultural University, 2020:19-30(in Chinese).
[28] 孙春华, 朱荻, 李志永, 等. 考虑流场特性的发动机叶片电解加工阴极设计及数值仿真[J]. 东南大学学报(自然科学版), 2004, 34(5):613-617. SUN C H, ZHU D, LI Z Y, et al. Cathode design and simulation of ECM turbine blade based on characteristics of liquid field[J]. Journal of Southeast University (Natural Science Edition), 2004, 34(5):613-617(in Chinese).
Outlines

/