Electronics and Electrical Engineering and Control

Characteristic analysis of dual-winding permanent magnet synchronous machine with phase-shifted windings for electric propulsion aircraft

  • LU Jiawei ,
  • ZHANG Zhuoran ,
  • LI Jincai ,
  • KONG Xianghao
Expand
  • 1. Center for More-Electric-Aircraft Power System, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2021-01-07

  Revised date: 2021-02-17

  Online published: 2021-07-09

Supported by

National Natural Science Foundation of China (U2141223); Jiangsu Provincial "333 Project" Funds for High-Level Talents under Award (BRA2020042); Fund of Jiangsu Province Key Laboratory of Aerospace Power System (CEPE2020002)

Abstract

This paper studies the dual-channel permanent magnet synchronous machine of the aircraft electric propulsion system. Firstly, the redundant output principle of the dual-channel machine system on the electric propulsion aircraft is explained. Then, the different forms of dual three-phase winding structures are compared. A dual-channel permanent magnet synchronous machine with phase-shifted dual three-phase windings is proposed. The electromagnetic characteristics of the dual three-phase synchronous machine with phase-shifted windings are emphatically studied. Also, the stator loss distribution characteristics are analyzed. Combining the cooling capacity and the stator loss distribution characteristics, the single-channel output capacity of the proposed dual-channel permanent magnet synchronous machine when a partial failure occurs is calculated. Finally, a 110 kW dual-channel permanent magnet synchronous machine prototype is developed. The analysis results are verified through experiments. The calculation results show that the machine can maintain an output power of at least 70% rated power when operating with a single channel, which can provide redundant power for the aircraft in emergency.

Cite this article

LU Jiawei , ZHANG Zhuoran , LI Jincai , KONG Xianghao . Characteristic analysis of dual-winding permanent magnet synchronous machine with phase-shifted windings for electric propulsion aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(5) : 325230 -325230 . DOI: 10.7527/S1000-6893.2021.25230

References

[1] SARLIOGLU B, MORRIS C T. More electric aircraft:review, challenges, and opportunities for commercial transport aircraft[J]. IEEE Transactions on Transportation Electrification, 2015, 1(1):54-64.
[2] JANSEN R, BOWMAN C, JANKOVSKY A, et al. Overview of NASA electrified aircraft propulsion (EAP) research for large subsonic transports[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston:AIAA, 2017.
[3] ZHANG X L, BOWMAN C L, O'CONNELL T C, et al. Large electric machines for aircraft electric propulsion[J]. IET Electric Power Applications, 2018, 12(6):767-779.
[4] 黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1):57-68. HUANG J, YANG F T. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):57-68(in Chinese).
[5] 孔祥浩, 张卓然, 陆嘉伟, 等. 分布式电推进飞机电力系统研究综述[J]. 航空学报, 2018, 39(1):021651. KONG X H, ZHANG Z R, LU J W, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):021651(in Chinese).
[6] 孙侠生, 程文渊, 穆作栋, 等. 电动飞机发展白皮书[J]. 航空科学技术, 2019, 30(11):1-7. SUNX S, CHENG W Y, MU Z D, et al. White paper on the development of electric aircraft[J]. Aeronautical Science & Technology, 2019, 30(11):1-7(in Chinese).
[7] 杨凤田, 范振伟, 项松, 等. 中国电动飞机技术创新与实践[J]. 航空学报, 2021, 42(3):624619. YANG F T, FAN Z W, XIANG S, et al. Technical innovation and practice of electric aircraft in China[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3):624619(in Chinese).
[8] KRATZ J L, THOMAS G L. Dynamic analysis of the STARC-ABL propulsion system[C]//AIAA Propulsion and Energy 2019 Forum. Reston:AIAA, 2019.
[9] SCHNULO S L, HALL D, CHIN J. Further development and validation of NASA X-57 maxwell mission planning tool for mods III and IV[C]//AIAA Propulsion and Energy 2019 Forum. Reston:AIAA, 2019:4491.
[10] FELDER J L, BROWN G V, KIM H D, et al. Turboelectric distributed propulsion in a hybrid wing body aircraft:ISABE-2011-1340[R]. Cleveland:NASA Glenn Research Center, 2011.
[11] HALL D, CHIN J, ANDERSON A, et al. Development of a maxwell X-57 high lift motor reference design[C]//AIAA Propulsion and Energy 2019 Forum. Reston:AIAA, 2019.
[12] YOON A, XIAO J Q, LOHAN D, et al. High-frequency electric machines for boundary layer ingestion fan propulsor[J]. IEEE Transactions on Energy Conversion, 2019, 34(4):2189-2197.
[13] SWANKE J, BOBBA D, JAHNS T, et al. Design of high-speed permanent magnet machine for aerospace propulsion[C]//AIAA Propulsion and Energy 2019 Forum. Reston:AIAA, 2019.
[14] SMITH A C, IACCHETTI M F, TUOHY P M. Feasibility study of an induction motor rim drive for an aircraft boundary-layer-ingestion fan[J]. The Journal of Engineering, 2019(17):4506-4510.
[15] JANSEN R, KASCAK P E, DYSON R W, et al. High efficiency megawatt motor preliminary design[C]//AIAA Propulsion and Energy 2019 Forum. Reston:AIAA, 2019.
[16] SCHEIDLER J J, TALLERICO T, MILLER W A, et al. Progress toward the critical design of the superconducting rotor for NASA's 1.4 MW high-efficiency electric machine[C]//AIAA Propulsion and Energy 2019 Forum. Reston:AIAA, 2019.
[17] LUK P C K. Superconducting machines-The enabling technology for future electric propulsion in aircraft[C]//20177th International Conference on Power Electronics Systems and Applications-Smart Mobility, Power Transfer & Security (PESA). Piscataway:IEEE Press, 2017:1-7.
[18] CORDUAN M, BOLL M, BAUSE R, et al. Topology comparison of superconducting AC machines for hybrid electric aircraft[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(2):1-10.
[19] DUBOIS A, VAN DER GEEST M, BEVIRT J, et al. Design of an electric propulsion system for SCEPTOR's outboard nacelle[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2016.
[20] 刘福佳, 杨凤田, 刘远强, 等. 电动轻型飞机电推进系统选型与参数匹配[J]. 南京航空航天大学学报, 2019, 51(3):350-356. LIU F J, YANG F T, LIU Y Q, et al. Typeselection and parameter matching of electric light aircraft propulsion system[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(3):350-356(in Chinese).
[21] 赵志朋. 新能源飞机仿真系统研究[D]. 沈阳:沈阳航空航天大学, 2019:11-13. ZHAO Z P. Research on new energy aircraft simulation system[D]. Shenyang:Shenyang Aerospace University, 2019:11-13(in Chinese).
[22] 康桂文, 胡雨, 李亚东, 等. 超轻型电动飞机电动力系统的参数匹配[J]. 航空动力学报, 2013, 28(12):2641-2647. KANG G W, HU Y, LI Y D, et al. Parameters matching of ultralight electric aircraft propulsion system[J].Journal of Aerospace Power, 2013, 28(12):2641-2647(in Chinese).
[23] 王书礼, 孙金博, 康桂文, 等. 一种电动飞机电推进系统的能效优化方法[J]. 航空学报, 2021, 42(3):623942. WANG S L, SUN J B, KANG G W, et al. Energy efficiency optimization method for electric aircraft propulsion system[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(3):623942(in Chinese).
Outlines

/