Review

Thermal analysis methods for high-temperature ceramic matrix composite components: Review and prospect

  • ZHAO Chenwei ,
  • MAO Junkui ,
  • TU Zecan ,
  • QIU Penglin
Expand
  • 1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Jiangsu Provincial Key Laboratory of Aeronautical Power System, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2020-04-22

  Revised date: 2020-05-12

  Online published: 1900-01-01

Supported by

National Science and Technology Major Project (2017-Ⅲ-0001-0025);National Natural Science Foundation of China (51906105);Jiangsu Provincial Natural Science Foundation of China (BK20190420);China Postdoctoral Science Foundation (2018M642248)

Abstract

Ceramic Matrix Composite (CMC), one of the fiber reinforced composites, has been increasingly applied in power devices such as aero gas turbine engines and rocket engines because of its excellent heat-resistance and mechanical performance. The thermal properties of the CMC exhibit obvious anisotropy due to the internal structural and the difference between matrix and fibers. Therefore, the traditional thermal analysis method based on homogeneous metal materials for hot components is no longer suitable for CMC hot components. This paper summarizes the CMC thermal conductivity prediction methods for different internal structures, including the Unidirectional Fiber Reinforced Composites (UFRC), the 2D/2.5D Weave Composites (TDWC) and the 3D Braided Composites (TDBC). Currently, a multi-scale thermal analysis method of CMC hot components with high accuracy which is applicable in engineering is a technical problem to be solved. For future engineering applications of CMC hot components, a thermal analysis model based on the reconstruction of three-dimensional microstructure characteristics is the key to establishing a high-precision thermal analysis method for CMC hot components. Meanwhile, thermal analysis needs to be further closely integrated with manufacturing processes and mechanical behavior analysis.

Cite this article

ZHAO Chenwei , MAO Junkui , TU Zecan , QIU Penglin . Thermal analysis methods for high-temperature ceramic matrix composite components: Review and prospect[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(6) : 24126 -024126 . DOI: 10.7527/S1000.6893.2020.24126

References

[1] DAWSON D M. Ceramic materials in aerospace[M]. Berlin:Springer Netherlands, 1995:183-201.
[2] AVESTON J. In properties of fiber composite[C]//National Physical Laboratory Conference Proceeding. London:National Physical Laboratory, 1971:63-74.
[3] TAMURA T, NAKAMURA T. Research of CMC application to turbine components[J]. IHI Engineering Review, 2005, 38:58-62.
[4] DICARLO J A, MORSCHER G N, BHATT R T. Progress in SiC/SiC ceramic composite development for gas turbine hot section components under NASA EPM and UEET programs[C]//Proceedings of ASME Turbo Expo 2002. Amsterdam:ASME, 2002.
[5] 高铁, 洪智亮, 杨娟. 商用航空发动机陶瓷基复合材料部件的研发应用及展望[J]. 航空制造技术, 2014(6):14-21. GAO T, HONG Z L, YANG J. Application and prospect of ceramic matrix composite components for commercial aircraft engine[J]. Aeronautical Manufacturing Technology, 2014(6):14-21(in Chinese).
[6] VERRILLI M, CALOMINO A, ROBINSON R C, et al. Ceramic matrix composite vane sub-element testing in a gas turbine environment[C]//Proceedings of ASME Turbo Expo 2004:Power for Land Sea and Air. Vienna:ASME, 2004.
[7] SINGH M. Advanced ceramic matrix composites for high temperature applications[C]//Plenary Lecture at the International Symposium on High Temperature Ceramics. Selb:Germany Ceramic Society, 2005.
[8] MURTHY P L N, NEMETH N N, BREWER D N, et al. Probabilistic analysis of a SiC/SiC ceramic matrix composite turbine vane[J]. Composites Part B:Engineering, 2008, 39(4):694-703.
[9] BEYER S, SCHMIDT W S, QUERING K, et al. Technology status of fuel cooled ceramic matrix composites for dual-mode ramjet and liquid rocket engine applications[C]//AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2012.
[10] 文生琼, 何爱杰. 陶瓷基复合材料在航空发动机热端部件上的应用[J]. 航空制造技术, 2009(z1):4-7. WEN S Q, HE A J. Application of CMC on thermal parts of aeroengine[J]. Aeronautical Manufacturing Technology, 2009(z1):4-7(in Chinese).
[11] NORRIS G, 张正国. F136发动机试验陶瓷基复合材料的潜在应用[J]. 国际航空, 2009(5):66. NORRIS G, ZHANG G Z. Potential application of ceramic matrix composites for F136 engine test[J]. International Aviation, 2009(5):66(in Chinese).
[12] 李杰. 复合材料在新一代商用发动机上的应用与发展[J]. 航空科学技术, 2012(1):18-22. LI J. Application and Development of composite materials for GE new generation civil aeroengines[J]. Aeronautical Science and Technology, 2012(1):18-22(in Chinese).
[13] 薛忠民. 走向核心——航空发动机热端部件扩大陶瓷基复合材料应用[J]. 玻璃钢/复合材料, 2017(1):124-125. XUE Z M. Towards the core-expanding the application of ceramic matrix composite materials for hot end components of aeroengine[J]. Fiber Reinforced Plastics/Composites, 2017(1):124-125(in Chinese).
[14] 吴大观. 关于新版综合高性能涡轮发动机技术计划——兼谈航空发动机研制中"基础技术"和"验证机"的重要作用[J]. 航空发动机, 2003, 29(2):1-4. WU D G. Recent progress of IHPTET——The role of pervasive technology and demonstrator in aircraft engine development[J]. Aeroengine, 2003, 29(2):1-4(in Chinese).
[15] ZHU D, MILLER R A. Hafnia-based materials development for advanced thermal environmental barrier coating applications:NASA/TM-2004-212729[R]. Cleveland:NASA Glenn Research Center, 2004.
[16] ZHU D, BANSAL N P, MILLER R A. Advanced oxide material systems for 1 650℃ thermal/environmental barrier coating applications:NASA/TM-2004-213219[R]. Seattle:American Ceramic Society, 2004.
[17] STEPHAN S W. Evaluation of ultra-high temperature ceramics and coating systems for their application in orbital and air-breathing propulsion[C]//18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2012.
[18] RYO I, YURARO A, YUKI K, et al. Development of short and continuous carbon fiber-reinforced zrb2-sic-zrc matrix composites for thermal protection systems[J]. Ceramics International, 2018, 44(13):15858-15867.
[19] 卢国锋, 乔生儒, 弓满锋, 等. C/Si-C-N复合材料的制备及其氧化行为研究[J]. 材料工程, 2010(3):17-21. LU G F, QIAO S R, GONG M F, et al. Fabrication and oxidation behavior of C/Si-C-N composite[J]. Journal of Materials Engineering, 2010(3):17-21(in Chinese).
[20] 余惠琴, 闫联生. CVD-Si3 N4陶瓷及其复合材料氧化行为研究进展[J]. 宇航材料工艺, 2004, 33(3):13-16. YU H Q, YAN L S. Oxidation behavior of CVD-Si3 N4 ceramic and its composite[J]. Aerospace Materials and Technology, 2004, 33(3):13-16(in Chinese).
[21] WEI Y Q, YANG Y, LIU M, et al. Oxidation mechanism and kinetics of SiBCN/HfC ceramic composites at high temperatures[J/OL]. Journal of Materials Research and Technology, (2019-12-20)[2020-06-17]. https://www.scencedrect.com/doi/10.1016/j.jmrt.2019.12.060.
[22] CORMAN G. Materials research for manufacturing[M]. UPADHYAY R, SINHA S. Berlin:Springer International Publishing, 2016:59-91.
[23] UNAL O, ECKEL A J, LAABS F C. The 1 400℃ oxidation effect on microstructure strength and cyclic life of SiC/SiC composites[J]. Scripta Metallurgica, 1995, 33(6):983-988.
[24] MUTNURI B. Thermal conductivity characterization of composite materials[D]. West Virginia:West Virginia University, 2006:1-71.
[25] TIAN T, KEVIN D C. Anisotropic thermal conductivity measurement of carbon-fiber/epoxy composite materials[J]. International Journal of Heat and Mass Transfer, 2012, 55(23-24):6530-6537.
[26] BEHZAD T, SAIN M. Measurement and prediction of thermal conductivity for hemp fiber reinforced compo-sites[J]. Polymer Engineering and Science, 2007, 47(7):977-983.
[27] 李专, 肖鹏, 熊翔, 等. C/C-Si复合材料的导热性能及其影响因[J]. 中南大学学报(自然科学版), 2013, 44(1):41-45. LI Z, XIAO P, XIONG X, et al. Thermal conductivity of C/C-SiC composites and its influence factors[J]. Journal of Central South University (Science and Technology), 2013, 44(1):41-45(in Chinese).
[28] 王亦菲, 刘伟峰, 马青松. PIP法制备SiCf/SiC复合材料导热性能[J]. 稀有金属材料与工程, 2009, 38(z2):466-469. WANG Y F, LIU W F, MA Q S. Effects on the thermal conductivity properties of SiCf/SiC composites manufactured by PIP process[J]. Rare Metal Materials and Engineering, 2009, 38(z2):466-469(in Chinese).
[29] 孙志刚, 宋迎东, 高希光, 等.细观结构对复合材料热膨胀系数的影响研究[J]. 应用力学报, 2004, 21(2):146-150. SUN Z G, SONG Y D, GAO X G, et al. Influence of micro-structural geometry on thermal expansion coefficient of composites[J]. Chinese Journal of Applied Mechanics, 2004, 21(2):146-150(in Chinese).
[30] PITCHUMANI R. Evaluation of thermal conductivities of disordered composite media using a fractal model[J]. Heat Transfer, 1999, 121(1):163-167.
[31] XU Y B, YAGI K. Automatic FEM model generation for evaluating thermal conductivity of composite with random materials arrangement[J]. Computational Materials Science, 2004, 30(3-4):242-250.
[32] LIU Z G, ZHANG H G, LU Z X, et al. Investigation on the thermal conductivity of 3-dimensional and 4-diret-nal braided composites[J]. Chinese Journal of Aeronautics, 2007, 20(4):327-331.
[33] HU C X, LI H J, ZHANG S Y, et al. Numerical simulation on thermal expansion coefficient of 3D braided C/C composites[J]. Rare Metals, 2014, 33(4):99-106.
[34] HEIDMANN J D, KASSAB A J, DIVO E A, et al. Conjugate heat transfer effects on a realistic film-cooled turbine vane[C]//ASME Turbo Expo Collocated with the International Joint Power Generation Conference. Atlanta:International Gas Turbine Institute, 2003:361-371.
[35] YUSOP N M, ALI A H, ABDULLAH M Z. Conjugate film cooling of a new multi-layer convex surface of turbine blades[J]. International Communications in Heat and Mass Transfer, 2013, 45:86-94.
[36] MA J, XU Y, ZHANG L, et al. Microstructure characterization and tensile of 2.5D C/SiC composite fabricated by chemical vapor infiltration[J]. Scripta Materialia, 2006, 54(11):1967-1971.
[37] 刘浩龙. 2.5维机织风扇静子叶片/机匣连接结构静强度分析方法研究[D]. 南京:南京航空航天大学, 2014:1-60. LIU H L. Strength analysis of 2.5 dimensional woven fan vane/casing connectional structure[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014:1-60(in Chinese).
[38] 关天茹. 2.5D编织石英/SiO2陶瓷基复合材料细观模型构建与实验验证[D]. 南京:南京航空航天大学, 2012:8-20. GUAN T R. Micro geometry and mechanical model and experimental study of 2.5D braided quartz/SiO2 ceramic matrix composites[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012:8-20(in Chinese).
[39] 徐瑞. 单向纤维增强陶瓷基复合材料导热系数计算方法[D]. 南京:南京航空航天大学,2013:1-67. XU R. Calculation method of thermal conductivity of unidirectional fiber reinforced ceramic matrix composite[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013:1-67(in Chinese).
[40] 张芳芳. 编织复合材料力学性能及热物理性能预报研究[D]. 秦皇岛:燕山大学, 2014:1-100. ZHANG F F. Prediction of mechanical and thermos-physical properties of braided composites[D]. Qinhuangdao:Yanshan University, 2014:1-100(in Chinese).
[41] BILISIK K. Three-dimensional braiding for composites:a review[J]. Textile Research Journal, 2013, 83(13):1414-1436.
[42] BOISSE P. Advances in composites manufacturing and process design[M]. Amsterdam:Elsevier, 2015:23.
[43] CHEN X. Advances in 3D textiles[M]. Amsterdam:Elsevier, 2015:1-15.
[44] 刘振国, 林强, 亚纪轩, 等. 三维全五向编织耳片接头力学性能试验研究[J]. 航空学报, 2016, 37(7):2225-2233. LIU Z G, LIN Q, YA J X, et al. Experimental research on mechanical properties of 3D full 5-direactional braided composites lugs[J]. Acta Aeronautica et Astrnautica Sinica, 2016, 37(7):2225-2233(in Chinese).
[45] GLASS D E. Ceramic matrix composite thermal protection systems and hot structures for hypersonic vehicles[C]//15th AIAA Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2008:1-36.
[46] TONGLY, MOURITZAP, BANNISTERMK. 3D fiber reinforced polymer composites[M]. Amsterdam:Elsevier, 2002:1-21.
[47] HILL R J. Elastic properties of reinforced solids some theoretical principles[J]. Journal of the Mechanics and Physics of Solids, 1963, 11(5):357-72.
[48] BABUSKA I. Homogenization approach in engineering[J]. Lecture Note in Economics and Mathematical Systems, 1976, 134(134):137-153.
[49] OLEINIK O A, SHAMAEV A S, YOSIFIAN G A. Mathematical problems in Elasticity and Homogenization[D]. New York:North-Holland, 1992:1-80.
[50] SRINIVASAN K. Homogenization of elliptic eigenvalue problems part I[J]. Applied Mathematics and Optimization, 1979, 5(1):153-167.
[51] THORNBURG J D, PEARS C D. Prediction of the thermal conductivity of filled and reinforced plastics[C]//ASME Turbo Expo 1965:Power for Land, Sea, and Air. Washington:ASME, 1965.
[52] SPRINGER G S, TSAI S W. Thermal conductivities of unidirectional materials[J]. Journal of Composite Materials, 1967, 1(2):166-173.
[53] ZOU M, YU B, ZHANG D, et al. Study on optimization of transverse thermal conductivities of unidirectional composites[J]. Journal of Heat Transfer, 2003, 125(6):980-987.
[54] FALEH A, AL-SULAIMAN, MOKHEIMER E M A. Prediction of the thermal conductivity of the constituents of fiber reinforced composite laminates[J]. Heat and Mass Transfer, 2006, 42(5):370-377.
[55] HASSELMAN D P H, JOHNSON L F, SYED R, et al. Heat conduction characteristics of a carbon-fiber-reinforced Lithia-alumina-silicate glass-ceramic[J]. Journal of Materials Science, 1987, 22(2):701-709.
[56] HASSELMAN D P H, JOHNSON L F. Effective thermal conductivity of composites with interfacial thermal barrier resistance[J]. Journal of Composite Materials, 1987, 21(6):508-515.
[57] MARKWORTH A J. The transverse thermal conductivity of a unidirectional fiber composite with fiber-matrix deboning:a calculation based on effective medium theory[J]. Journal of Materials Science Letters, 1993, 12(19):1487-1489.
[58] ZOU M, YU B, ZHANG D. An analytical solution for transverse thermal conductivities of unidirectional fiber composites with thermal barrier[J]. Journal of Physics D:Applied Physics, 2002, 35(15):1867-1874.
[59] LU T J, HUTCHINSON J W, RODEL D J. Effect of matrix cracking on the overall thermal conductivity of fiber-reinforced composites[J]. Philosophical Transactions of the Royal Society A:Mathematical Physical and Engineering Sciences, 1995, 351(1697):595-610.
[60] YOUNGBLOOD G E, SENOR D J, JONES R H. Optimizing the transverse thermal conductivity of 2D-SiCf/SiC composites I model[J]. Journal of Nuclear Materials, 2002, 307-311(Part 2):1112-1119.
[61] BENVENISTE Y. Effective thermal conductivity of composites with a thermal contact resistance between the constituents:Nondilute case[J]. Journal of Applied Physics, 1987, 61(8):1-5.
[62] KLETT J W, ERVIN V J, EDIE D D. Finite element model of heat transfer in carbon/carbon composites[J]. Composites Science and Technology, 1999, 59(4):593-607.
[63] ISLAM M D R, PRAMILA A. Thermal conductivity of fiber reinforced composites by the FEM[J]. Journal of Composite Materials, 1999, 33(18):1699-1715.
[64] MADSEN B, LILHOLT H. Physical and mechanical properties of unidirectional plant fiber composites-an evaluation of the influence of porosity[J]. Composites Science and Technology, 2003, 63(9):1265-1272.
[65] SOMMERS A, WANG Q, HAN X. Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems:A review[J]. Applied Thermal Engineering, 2010, 30(11-12):1277-1291.
[66] MOLINA J M, PRIETO R, NARCISO J, et al. The effect of porosity on the thermal conductivity of Al-12wt% Si/SiC composites[J]. Scripta Materialia, 2009, 60(7):582-585.
[67] HASSELMAN D P H. Effect of cracks on thermal conductivity[J]. Journal of Composite Materials, 1978, 12(4):403-407.
[68] WHITTAKER A J, TAYLOR R, TAWIL H. Thermal transport properties of carbon-carbon fiber composites I thermal diffusivity measurements[J]. Proceedings Ma-thematically and Physical Sciences, 1990, 430(1878):167-181.
[69] WHITTAKER A J, TAYLOR R, TAWIL H. Thermal transport properties of carbon-carbon fiber composites II. Microstructural characterization[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1990, 430(1878):183-197.
[70] WHITTAKER A J, TAYLOR R. Thermal transport properties of carbon-carbon fiber composites III. Mathematical model[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1990, 430(1878):199-211.
[71] AL-ASTRABADI F, OCALLAGHAN P, PROBERT S. Thermal contact resistance dependence on surface topography[C]//14th Thermophysics Conference. Reston:AIAA, 1979.
[72] KRACH A, ADVANI S G. Influence of void shape void volume and matrix anisotropy on effective thermal conductivity of a three-phase composite[J]. Journal of Composite Materials,1996, 30(8):933-946.
[73] YAN D, WEN J, XU G. A Monte-Carlo simulation and effective thermal conductivity calculation for unidirectional fiber reinforced CMC[J]. Applied Thermal Engineering, 2015, 94:827-835.
[74] MANSILLA D T. Analysis and simulation of transverse random fracture of long fiber reinforced composites[D]. Girona:University De Girona, 2005:1-65.
[75] GANAPATHY D, SINGH K, PHELAN P E. An effective unit cell approach to compute the thermal conductivity of composites with cylindrical particles[J]. Journal of Heat Transfer, 2005, 127(6):553-559.
[76] GRAHAM S, MCDOWELL D L. Numerical analysis of the transverse thermal conductivity of composites with imperfect interfaces[J]. Journal of Heat Transfer, 2003, 125(3):389-393.
[77] JIANG H, MAO J, TU Z, et al. Thermal conductivity prediction method of fiber-reinforced material with microstructure identification[J]. Journal of Thermophysics and Heat Transfer, 2016, 30(4):1-11.
[78] VISHNEVSKII G E, SHLENSKII O F. Effect of the properties of the components and the geometric characteristics of the structure on the thermal conductivity coefficients of glass-reinforced plastics[J]. Mechanics of Composite Materials, 1968, 4(1):11-15.
[79] ISMAIL M I, AMMAR A S A, EL-OKEILY M. Heat transfer through textile fabrics:mathematical model[J]. Applied Mathematical modeling, 1988, 12(4):434-440.
[80] NING Q G, CHOU T W. A closed-form solution of the transverse effective thermal conductivity of woven fabric composites[J]. Journal of Composite Materials, 1995, 29(17):2280-2294.
[81] DASGUPTA A, AGARWAL R K, BHANDARKAR S M. Three-dimensional model of woven-fabric composites for effective thermo-mechanical and thermal properties[J]. Composites Science and Technology, 1996, 56(3):209-223.
[82] ZHU F, LI K. Determining effective thermal conductivity of fabrics by using fractal method[J]. International Journal of Thermophysics, 2010, 31(3):612-619.
[83] YOSHIHIRO Y, HIROAKI Y, HAJIME M. Effective thermal conductivity of plain weave fabric and its composite material made from high strength fibers[J]. Journal of Textile Engineering, 2008, 54(4):111-119.
[84] SIDDIQUI M O R, SUN D. Finite element analysis of thermal conductivity and thermal resistance behavior of woven fabric[J]. Computational Materials Science, 2015, 75, 45-51.
[85] VOREL J, MICHAL Š. Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites using the Mori-Tanaka method[J]. Structural Engineering and Mechanics, 2009, 33(4):429-446.
[86] FAROOQI J K, SHEIKH M A. Finite element model of thermal transport in ceramic matrix composites[J]. Computational Materials Science, 2006, 37(3):361-373.
[87] PUGLIA P D, SHEIKH M A, HAYHURST D R. Classification and quantification of initial porosity in a CMC laminate[J]. Composites Part A:Applied Science and Manufacturing, 2004, 35(2):223-230.
[88] LIU Y Q, QU Z G, GUO J, et al. Numerical study on effective thermal conductivities of plain woven C/SiC composites with considering pores in interlaced woven yarns[J]. International Journal of Heat and Mass Transfer, 2019, 140:410-419.
[89] DONG K, LIU K, PAN L J, et al. Experimental and numerical investigation on the thermal conduction properties of 2.5D angle-interlock woven composites[J]. Composite Structures, 2016, 154:319-333.
[90] XU Y J, REN S X, ZHANG W H. Thermal conductivities of plain woven C/SiC composite:micromechanical model considering PyC interphase thermal conductance and manufacture induced voids[J]. Composite Structures, 2018, 193:212-223.
[91] MEI H. Measurement and calculation of thermal residual stress in fiber reinforced ceramic matrix composites[J]. Composites Science and Technology, 2008, 68(15-16):3285-3292.
[92] GAO X G, HAN X,SONG Y D. X-ray computed tomography based microstructure reconstruction and numerical estimation of thermal conductivity of 2.5D ceramic matrix composite[J]. Ceramics International, 2017, 43(13):9790-9797.
[93] CHEN M M, ZHANG D X, GONG J H. Predictions of trans-verse thermal conductivities for plain weave ceramic matrix composites under in-plane loading[J]. Composite Structures, 2018, 48(5):828-842.
[94] MOHAJERJASBI S. Structure and properties of three-dimensional braided composites including axial yarns[J]. AIAA Journal, 1996, 34(1):209-211.
[95] 程伟, 赵寿根, 刘振国, 等. 三维四向编织复合材料等效热特性数值分析和试验研究[J]. 航空学报, 2002, 23(2):102-105. CHENG W, ZHAO S G, LIU Z G, et al. Thermal property of 3-d braided fiber composites experimental and numerical results[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(2):102-105(in Chinese).
[96] 杨振宇, 卢子兴, 刘振国, 等. 三维四向编织复合材料力学性能的有限元分析[J]. 复合材料学报, 2005, 22(5):155-161. YANG Z Y, LU Z X, LIU Z G, et al. Finite element analysis of the mechanical properties of 3-d braided composites[J]. Acta Materiae Compositae Sinica, 2005, 22(5):159-165(in Chinese).
[97] GOU J J, FANG W Z, DAI Y J, et al. Multi-size unit cells to predict effective thermal conductivities of 3D four-directional braided composites[J]. Composite Structures, 2017, 163:152-167.
[98] 李典森, 陈利, 李嘉禄. 三维五向编织复合材料的细观结构分析[J]. 天津工业大学学报, 2003, 22(6):7-11. LI D S, CHEN L, LI J L. Microstructure analysis of 3-dimensional 5-directional braided composites[J]. Journal of Tianjin Polytechnic University, 2003, 22(6):7-11(in Chinese).
[99] 李典森, 卢子兴, 刘振国, 等. 三维五向编织复合材料导热性能的有限元分析[J]. 航空动力学报, 2008, 23(8):1455-1460. LI D S, LU Z X, LIU Z G, et al. Finite element analysis of thermal conductivity of three dimensional and five directional braided composites[J]. Journal of Aerospace Power, 2008, 23(8):1455-1460(in Chinese).
[100] 江华. 陶瓷基涡轮叶片热分析模型研究[D]. 南京:南京航空航天大学, 2015:57-69. JIANG H. Thermal analysis methods for ceramic matrix composite turbine vanes[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015:57-69(in Chinese).
[101] 卢子兴, 王成禹, 夏彪. 三维全五向编织复合材料弹性性能及热物理性能的有限元分析[J]. 复合材料学报, 2013, 30(3):160-167. LU Z X, WANG C Y, XIA B. Finite element analysis of elastic property and thermos-physical property of three-dimensional and full five-directional braided composites[J]. Acta Materiae Compositae Sinica, 2013, 30(3):160-167(in Chinese).
[102] LEE S E, YOO J S, KANG J H, et al. Prediction of the thermal conductivities of four-axial non-woven composites[J]. Composite Structures, 2009, 89(2):262-269.
[103] JIANG L, XU G, CHENG S, et al. Predicting the thermal conductivity and temperature distribution in 3D braided composites[J]. Composite Structures, 2014, 108(1):578-583.
[104] DONG K, ZHANG J, JIN L, et al. Multi-scale finite element analyses on the thermal conductive behaviors of 3D braided composites[J]. Composite Structures, 2016, 143:9-22.
[105] FANG W Z, CHEN L, GOU J J, et al. Predictions of effective thermal conductivities for three-dimensional four-directional braided composites using the lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2016; 92:120-130.
[106] HUANG X, ZHOU Q, LIU J, et al. 3D stochastic modeling simulation and analysis of effective thermal conductivity in fibrous media[J]. Powder Technology, 2017, 320:397-404.
[107] BHATIA T, JARMON D, SHI J, et al. CMC combustor liner demonstration in a small helicopter engine[C]//Proceedings of ASME Turbo Expo:Power for Land, Sea and Air. Glasgow:ASME, 2010:509-513.
[108] HALD H, ORTELT M, FISCHER I, et al. Effusion cooled CMC rocket combustion chamber[C]//AIAA/CIRA 13th International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2005.
[109] LEBEL L, TURENNE S, BOUKHILI R. An experimental apparatus and procedure for the simulation of thermal stresses in gas turbine combustion chamber panels made of ceramic matrix composites[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(9):1-11.
[110] BREWER D, OJARD G, GIBLER M. Ceramic matrix composite combustor liner rig test[C]//ASME Turbo Expo 2000:Power for Land, Sea, and Air. Munich:ASME, 2000.
[111] KIMMEL J B, PRICE J R, MORE K L, et al. The evaluation of CFCC liners after field testing in a gas turbine IV[C]//ASME Turbo Expo 2003:Power for Land, Sea, and Air. Atlanta:ASME, 2000.
[112] MORE K L, WALKER L R, WANG Y L, et al. Microstructural and mechanical characterization of a hybrid oxide CMC combustor liner after 25,000 hour engine test[C]//ASME Turbo Expo 2009:Power for Land, Sea, and Air. Orlando:ASME, 2009.
[113] ROODE V M, BHATTACHARYA A K. Durability of oxide/oxide ceramic matrix composites in gas turbine combustors[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(5):1-9.
[114] BOUQUET C, LACOMBE A, HAUBER B, et al. Ceramic matrix composites cooled panel development for advanced propulsion systems[C]//45th AIAA/ASME/ASCE/AH S/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2004.
[115] PENG L, HE G Q, LIU P J. Experimental and numerical investigation of active cooling ceramic matrix composite for ramjet propulsion system[C]//45th AIAA/AS ME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston:AIAA, 2009.
[116] REIMER T, KUHN M, ALI G, GULHAN A, et al. Transpiration cooling tests of porous CMC in hypersonic flow[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2011.
[117] MICHAEL J, VANN H, ANDY N, et al. Ceramic matrix composite materials for engine exhaust systems on next generation vertical lift vehicles[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140:1-14.
[118] 刘宁夫, 蒋军亮, 丛琳华, 等. 陶瓷基复合材料超高温冷热冲击试验[J]. 科学技术与工程, 2019, 19(28):401-405. LIU N F, JIANG J L, CONG L H, et al. Ultra-temperature cooling and thermal shock test for ceramic matrix composite[J]. Science Technology and Engineering, 2019, 19(28):401-405(in Chinese).
[119] WANG X W, WEI K, TAO Y, et al. Thermal protection system integrating graded insulation materials and multilayer ceramic matrix composite cellular sandwich panels[J]. Composite Structures, 2018, 209, 523-534.
[120] WEI K, HE R J, CHENG X M, et al. Fabrication and heat transfer characteristics of C/SiC pyramidal core lattice sandwich panel[J]. Applied Thermal Engineering, 2015, 81:10-17.
[121] 赵宏丽. 碳/碳编织复合材料温度场有限元分析[D]. 济南:山东轻工业学院, 2012:1-68. ZHAO H L. Finite element analysis of the temperature field for carbon/carbon braided composites[D]. Ji'nan:Shandong Institute of light industry, 2012:1-68(in Chinese).
[122] 陈龙淼. 复合材料身管热学性能研究[D]. 南京:南京理工大学, 2005:20-56. CHEN L M. Study on thermal properties of composite barrel[D]. Nanjing:Nanjing University of technology, 2005:20-56(in Chinese).
[123] NITA K, OKITA Y, NAKAMATA C. Experimental and numerical study on application of a CMC nozzle for high temperature gas turbine[C]//36th International conference on advanced ceramics and composites. Daytona Beach:John Wiley & Sons, 2013:315-324.
[124] 屠泽灿. 陶瓷基复合材料导热机理及其在气冷涡轮叶片热分析中的应用研究[D]. 南京:南京航空航天大学, 2018:49-160. TU Z C. Investigation of CMC's Thermal conductive on mechanism and its application in thermal analysis for turbine vane[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018:49-160(in Chinese).
[125] TU Z C, MAO J K, JIANG H, et al. Numerical method for the thermal analysis of a ceramic matrix composite turbine vane considering the spatial distribution of the anisotropic thermal conductivity[J]. Applied Thermal Engineering, 2017, 127:436-452.
[126] LIU X, SHEN X, GONG L, et al. Multi-scale thermos-dynamic analysis method for 2D SiC/SiC composite turbine guide vanes[J]. Chinese Journal of Aeronautics, 2018, 31(1):117-125.
[127] SHEN X L, QIAO Y F, DONG S J, et al. Thermal load test method and numerical calculation for ceramic matrix composite turbine guide vane[J]. Applied Composite Materials, 2019, 26:553-573.
[128] TU Z C, MAO J K, HAN X S, et al. Prediction model for the anisotropic thermal conductivity of a 2.5D braided ceramic matrix composite with thin wall structure[J]. Applied Sciences, 2019, 9(5):875-891.
[129] PROKEIN D, BOEHRK H, WOLFERSDORF J V. Analysis of anisotropy effects for transpiration cooled CMC leading edges using OpenFOAM[C]//20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2015.
[130] 赵晓. 考虑气膜孔与编织结构干涉的复合材料气膜冷却研究[D]. 南京:南京航空航天大学, 2017:9-120. ZHAO X. Investigation on film cooling of braided composites considering film hole and braided structure interference[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:9-120(in Chinese).
[131] SMIALEK J L, ROBINSON R C, OPILA E J, et al. SiC and Si3 N4 recession due to SiO2 scale volatility under combustor conditions[J]. Advanced Composite Materials, 1999, 8(1):33-45.
[132] FERRARI L, BARBATO M, ESSER B, et al. Sandwich structured ceramic matrix composites with periodic cellular ceramic cores:an active cooled thermal protection for space vehicles[J]. Composite Structures, 2016, 154:61-68.
[133] ZHANG D X, HAYHURST D R. Influence of applied in-plane strain on transverse thermal conductivity of 0°/90° and plain weave ceramic matrix composites[J]. International Journal of Solids and Structures, 2011, 48(5):828-842.
[134] 屠泽灿, 毛军逵, 赵晓. 各向异性复合材料平板气膜冷却试验研究[J]. 工程热物理学报, 2018, 39(4):852-859. TU Z C, MAO J K, ZHAO X. Experimental study of film cooling over a composite flat plate with anisotropic thermal conductivity[J]. Journal of Engineering Thermophysics, 2018, 39(4):852-859(in Chinese).
[135] 侯亚东, 单勇, 李江宁, 等. 各向异性复合材料平板气膜冷却特性实验和数值研究[J]. 航空动力学报, 2017, 32(10):2384-2393. HOU Y D, SHAN Y, LI J N, et al. Experimental and numerical studies on the film cooling characteristics of anisotropic composite plates[J]. Journal of Aeronautical Power, 2017, 32(10):2384-2393(in Chinese).
[136] ZHONG F Q, BROWN G L. Experimental study of multi-hole cooling for integrally woven, ceramic matrix composite walls for gas turbine applications[J]. International Journal of Heat and Mass Transfer, 2009, 52(3-4):971-985.
[137] ZHONG F Q, BROWN G. Experimental and numerical studies of multi-hole cooled ceramic matrix composite liners[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005.
[138] DAHMEN W, MUELLER S, ROM M, et al. Numerical boundary layer investigations of transpiration cooled turbulent channel flow[J]. International Journal of Heat and Mass Transfer, 2015, 86:90-100.
[139] KOENIG V, ROM M, MUELLER S, et al. Numerical and experimental investigation of transpiration cooling with carbon/carbon characteristic outflow distributions[J]. Journal of Thermophysics and Heat Transfer, 2019, 33(2):449-461.
[140] CAO L Y, LIU Y S, ZHANG Y H, et al. Enhancing thermal conductivity of C/SiC composites containing heat transfer channels[J]. Journal of the European Ceramic Society, 2020, 40(10):3520-3527.
[141] ZHOU Q, YIN X W, Ye F, et al. Multiscale designed SiCf/Si3N4 composite for low and high frequency cooperative electromagnetic absorption[J]. Journal of the American Ceramic Society, 2018, 101(12):5552-5563.
[142] CHEN Z W, LI Z Y, LI J J, et al. 3D printing of ceramics:A review[J]. Journal of the European Ceramic Society, 2018, 39:661-687.
[143] MEI H, ZHAO X, ZHOU S X, et al. 3D-printed oblique honeycomb Al2O3/SiCw structure for electromagnetic wave absorption[J]. Chemical Engineering Journal, 2019, 372:940-945.
[144] 杨金山, 黄凯, 游潇, 等. 3D打印三维石墨烯及其高性能陶瓷基复合材料[J]. 中国材料进展, 2018, 37(8):590-596. YANG J S, HUANG K, YOU X. Three-dimensional graphene by 3 d printing and related advanced ceramic matrix composites[J]. Materials China, 2018, 37(8):590-596(in Chinese).
[145] ABDI F, GODINES C, MORSCHER G N, et al. Foreign object damage and fatigue after impact simulations on flat and curved Hi Nicalon and Hi Nicalon type S (MI SiC)specimens at room and 1 200℃ using building block approach[C]//Proceedings of ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition. Seoul:ASME, 2016.
[146] PRESBY M J, MANSOUR R, MANIGANDAN K,et al. Characterization and simulation of foreign object damage in curved and flat SiC/SiC ceramic matrix composites[J]. Ceramics International, 2018, 45(2):1-9.
[147] CHEN Y, GÉLÉBART L, CHATEAU C, et al. 3D detection and quantitative characterization of cracks in a ceramic matrix composite tube using X-ray computed tomography[J]. Experimental Mechanics, 2020, 60:409-424.
Outlines

/