For the problem that the navigation measurement noise of near-space vehicles becomes non-Gaussian in a high dynamic environment, a flicker noise model is used to simulate the non-Gaussian characteristics of measurement noise. Then, a high dynamic loop tracking method based on Huber Cubature Kalman Filter (Huber CKF) and an adaptive deeply integrated navigation model based on the altitude angle adaptive fading factor are presented on the basis of the Beidou/INS deeply integrated model. First, a flicker noise model is developed to simulate the effect of ionospheric flicker on the carrier phase in high-speed environments. Second, a robust filtering method is used to replace the phase-locked loop, which overcomes the problem that the accuracy of the phase discriminator is reduced under non-Gaussian noise conditions. Finally, an adaptive fading factor is designed based on the satellite altitude angle to adjust the weights of each channel, which can effectively improve the position accuracy. The simulation results show that the estimation accuracy in the position Root Mean Squared Error (RMSE) can be improved by 0.288 4 m, and the estimation accuracy in velocity RMSE can be improved by 0.018 7 m/s, when the measurement accuracy indicator of the gyroscope is 0.01 (°)/h and the measurement accuracy indicator of the accelerometer is 10-5 g. The methods presented in this paper can effectively improve the navigation accuracy of the near-space vehicle, and provide theoretical references for the navigation system of the near-space vehicle in the future.
SUN Hongchi
,
MU Rongjun
,
LONG Teng
,
LI Shoupeng
,
CUI Naigang
. Beidou/INS high dynamic deeply integrated navigation of near-space vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022
, 43(9)
: 325672
-325672
.
DOI: 10.7527/S1000-6893.2021.25672
[1] LI X X, LI X, LIU G G, et al. Triple-frequency PPP ambiguity resolution with multi-constellation GNSS: BDS and Galileo[J]. Journal of Geodesy, 2019, 93(8): 1105-1122.
[2] PAN L, ZHANG X H, LI X X, et al. Satellite availability and point positioning accuracy evaluation on a global scale for integration of GPS, GLONASS, BeiDou and Galileo[J]. Advances in Space Research, 2019, 63(9): 2696-2710.
[3] TANG C P, HU X G, ZHOU S S, et al. Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements[J]. Journal of Geodesy, 2018, 92(10): 1155-1169.
[4] CHAI D S. Study on the theory and method in integrated navigation of multi-constellation GNSS/INS[D]. Xuzhou: China University of Mining and Technology, 2020: 29-35 (in Chinese). 柴大帅. 多星座GNSS/INS组合导航理论与方法研究[D]. 徐州: 中国矿业大学, 2020: 29-35.
[5] LIANG J. Research on low-cost GNSS/INS integrated navigation[D]. Shanghai: Shanghai Ocean University, 2019: 23-25 (in Chinese). 梁健. 廉价GNSS/INS组合导航系统的研究[D]. 上海: 上海海洋大学, 2019: 23-25.
[6] HAN H Z, WANG J. Robust GPS/BDS/INS tightly coupled integration with atmospheric constraints for long-range kinematic positioning[J]. GPS Solutions, 2017, 21(3): 1285-1299.
[7] LI M Y. Study on key technologies of GNSS/INS deep coupled based on vector tracking[D]. Beijing: China Academy of Launch Vehicle Technology, 2019: 4-12 (in Chinese). 李明玉. 基于矢量跟踪的GNSS/INS深组合关键技术研究[D]. 北京: 中国运载火箭技术研究院, 2019: 4-12.
[8] LIU B Y. GNSS/MEMS INS deeply integrated navigation and its integrity monitoring[D]. Shanghai: Shanghai Jiao Tong University, 2019: 4-14 (in Chinese). 刘宝玉. GNSS/MEMS INS深组合导航及其完好性监测[D]. 上海: 上海交通大学, 2019: 4-14.
[9] REN Y F. Research on the key technology of receiving and processing the BDS B1C signal under highly dynamic environment[D]. Xi'an: National Time Service Center, Chinese Academy of Sciences, 2019: 2-9 (in Chinese). 任宇飞. 北斗B1C信号高动态接收处理关键技术研究[D]. 西安: 中国科学院大学(中国科学院国家授时中心), 2019: 2-9.
[10] JR SPILKER J J. Vector delay lock loop processing of radiolocation transmitter signals: US5398034[P]. 1995-03-14.
[11] LASHLEY M, BEVLY D M. Analysis of discriminator based vector tracking algorithms[J]. Proceedings of the National Technical Meeting of the Institute of Navigation, 2007: 570-576.
[12] HENKEL P, GIGER K, GUNTHER C. Multifrequency, multisatellite vector phase-locked loop for robust carrier tracking[J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(4): 674-681.
[13] PANY T, KANIUTH R, EISSFELLER B. Deep integration of navigation solution and signal processing[C]//Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005), 2005: 1095-1102.
[14] WON J H, DÖTTERBÖCK D, EISSFELLER B. Performance comparison of different forms of Kalman filter approaches for a vector-based GNSS signal tracking loop[J]. Navigation, 2010, 57(3): 185-199.
[15] XIAO Z B, TANG X M, PANG J, et al. The study of code tracking bias in vector delay lock loop[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2010, 40(5): 568-574 (in Chinese). 肖志斌, 唐小妹, 庞晶, 等. 矢量延迟锁定环码跟踪偏差产生机理研究[J]. 中国科学: 物理学力学天文学, 2010, 40(5): 568-574.
[16] ZHAO S, AKPS D. An open source GPS/GNSS vector tracking loop-implementation, filter tuning, and results[C]//Proceedings of the 2011 International Technical Meeting of The Institute of Navigation, 2011: 1293-1305.
[17] LONG T, MU R J, SU B Z, et al. Research on dual-antenna GPS/MEMS-INS deeply-integrated navigation approach[J]. Journal of Astronautics, 2021, 42(1): 92-102 (in Chinese). 龙腾, 穆荣军, 苏炳志, 等. 双天线GPS/MEMS-INS深组合导航方法研究[J]. 宇航学报, 2021, 42(1): 92-102.
[18] WU D W, JING J, LI H L. Influence of near space environment on hypersonic vehicle navigation system[J]. Aerodynamic Missile Journal, 2012(12): 73-80 (in Chinese). 吴德伟, 景井, 李海林. 临近空间环境对高超声速飞行器导航系统的影响分析[J]. 飞航导弹, 2012(12): 73-80.
[19] JIN K, CHEN S Y, MA X, et al. Review of simulation and control of plasma sheath of hypersonic vehicles in near-space[J]. Modern Applied Physics, 2020, 11(4): 3-16 (in Chinese). 金科, 陈思尧, 马昕, 等. 临近空间高超声速飞行器等离子鞘套模拟及调控研究进展[J]. 现代应用物理, 2020, 11(4): 3-16.
[20] YANG H J. Research on the acquisition and tracking algorithm of hypersonic aerocraft Beidou signal[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2016: 7-11 (in Chinese). 杨恒进. 高超声速飞行器北斗信号捕获与跟踪算法研究[D]. 南京: 南京邮电大学, 2016: 7-11.
[21] SUN P Y. Study on key techniques of the satellite navigation signals carrier tracking in the presence of ionospheric scintillation[D]. Changsha: National University of Defense Technology, 2017: 1-10 (in Chinese). 孙鹏跃. 卫星导航信号抗电离层闪烁载波跟踪关键技术研究[D]. 长沙: 国防科学技术大学, 2017: 1-10.
[22] REN Y. Study on electromagnetic scattering characteristics of hypersonic vehicle in plasma sheath[D]. Xi'an: Xidian University, 2020: 67-83 (in Chinese). 任弋. 等离子体鞘套中高超声速飞行器电磁散射特性研究[D]. 西安: 西安电子科技大学, 2020: 67-83.
[23] BÉNIGUEL Y. Global Ionospheric Propagation Model (GIM): A propagation model for scintillations of transmitted signals[J]. Radio Science, 2002, 37(3): 4-1.
[24] YEH K C, LIU C H. Radio wave scintillations in the ionosphere[J]. Proceedings of the IEEE, 1982, 70(4): 324-360.
[25] AARONS J. Global morphology of ionospheric scintillations[J]. Proceedings of the IEEE, 1982, 70(4): 360-378.
[26] WU D. Research on ionosphere scintillations based on space-based GNSS occultation sounding technology[D]. Beijing: National Space Science Center, Chinese Academy of Sciences, 2019: 4-6 (in Chinese). 吴迪. 基于天基GNSS掩星探测技术的电离层闪烁研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2019: 4-6.
[27] XIE G. Principles of GPS and receiver design[M]. Beijing: Publishing House of Electronics industry, 2017 (in Chinese). 谢钢. GPS原理与接收机设计[M]. 北京: 电子工业出版社, 2017.
[28] Interface specification for signal in space of BeiDou navigation satellite system—Part 1: Open service signal B1C: GB/T 39414.1-2020[S]. Beijing: State Administration for Market Regulation, Standardization administration, 2020: 30-35 (in Chinese). 北斗卫星导航系统空间信号接口规范第1部分: 公开服务信号B1C: GB/T 39414.1-2020[S]. 北京: 国家市场监督管理总局国家标准化管理委员会, 2020: 30-35.
[29] JASON L S, DAVID D, DAVID W. Periodic optimal cruise of an atmospheric vehicle[J]. Journal of Guidance, 1985, 8(16): 31-38.