Nickel-based superalloys have been widely used in the aerospace and military industry due to their unique physical and chemical properties. However, the commonly used mechanical milling methods of nickel-based superalloys have some disadvantages, such as low material removal rate, high cost, and severe tool wear, which are prominent when processing integrated disks, turbine disks, gearboxes, connecting frames, and return cabins in the aerospace field. To solve these problems, high-efficiency electrical discharge assisted arc milling of nickel-based superalloy is studied, and a high-purity graphite tube is used as the tool electrode in this research. The outer working fluid is high-speed compressed air, and the inner working fluid is deionized water. A self-developed electrical discharge assisted arc milling CNC machine tool is used. The effects of different machining parameters on the material removal rate, relative electrode wear rate, and machining error of superalloy GH4169 are studied. The microstructures of the machined workpiece surface are also observed. The experimental results show that the material removal rate of nickel-based superalloy GH4169 can reach 11 523 mm3/min, with the relative electrode wear rate of about 1.5%, and the machining cost is much lower than that of conventional mechanical milling.
[1] ZHANG X S, CHEN Y J, HU J L. Recent advances in the development of aerospace materials[J]. Progress in Aerospace Sciences, 2018, 97:22-34.
[2] ZHANG Y, XU Z Y, WANG Y, et al. Surface-improvement mechanism of hybrid electrochemical discharge process using variable-amplitude pulses[J]. Chinese Journal of Aeronautics, 2020, 33(10):2782-2793.
[3] PENG Z L, ZHANG D Y, ZHANG X Y. Chatter stability and precision during high-speed ultrasonic vibration cutting of a thin-walled titanium cylinder[J]. Chinese Journal of Aeronautics, 2020, 33(12):3535-3549.
[4] PERRUT M, CARON P, THOMAS M, et al. High temperature materials for aerospace applications:Ni-based superalloys and γ-TiAl alloys[J]. Comptes Rendus Physique, 2018, 19(8):657-671.
[5] MENG B, WAN M, ZHAO R, et al. Micromanufacturing technologies of compact heat exchangers for hypersonic precooled airbreathing propulsion:A review[J]. Chinese Journal of Aeronautics, 2020, 34(2):79-103.
[6] 孔豪豪, 杨树峰, 曲敬龙, 等. GH4169铸锭中夹杂物的类型及分布规律[J]. 航空学报, 2020, 41(4):423306. KONG H H, YANG S F, QU J L, et al. Type and distribution of inclusion in GH4169 nickel based superalloy[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4):423306(in Chinese).
[7] EZUGWU E O, WANG Z M, MACHADO A R. The machinability of nickel-based alloys:a review[J]. Journal of Materials Processing Technology, 1999, 86(1-3):1-16.
[8] 李茜, 张福禄, 赵子华. 镍基单晶/柱晶高温合金超高周疲劳研究进展[J]. 航空学报, 2021, 42(5):524340. LI Q, ZHANG F L, ZHAO Z H. Review of very high cycle fatigue of nickel-based single-crystal and directionally solidified superalloys[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5):524340(in Chinese).
[9] 徐金亭, 牛金波, 陈满森, 等. 精密复杂曲面零件多轴数控加工技术研究进展[J]. 航空学报, 2021, 42(5):524340. XU J T, NIU J B, CHEN M S, et al. Research Progress in multi axis CNC machining of precision complex curved parts[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5):524340(in Chinese).
[10] SINGH G, GUPTA M K, MIA M, et al. Modeling and optimization of tool wear in MQL-assisted milling of Inconel 718 superalloy using evolutionary techniques[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1-4):481-494.
[11] 刘均伟. 镍基高温合金Inconel718高速切削实验研究[D]. 济南:山东大学, 2018. LIU J W. Experimental study on high speed cutting of nickel-based superalloy inconel718[D]. Ji'nan:Shandong University, 2018(in Chinese).
[12] 罗凯. 基于切削仿真的高效铣削镍基高温合金工艺参数优化研究[D]. 长春:长春理工大学, 2019. LUO K. Study on process parameters optimization for high efficiency milling of nickel based superalloy based on cutting simulation[D]. Changchun:Changchun University of Science and Technology, 2019(in Chinese).
[13] ÇELIK A, SERT ALA AGˇG3 AÇ M, TURAN S, et al. Wear behavior of solid SiAlON milling tools during high speed milling of Inconel 718[J]. Wear, 2017, 378-379:58-67.
[14] MING W W, HUANG X H, JI M, et al. Analysis of cutting responses of Sialon ceramic tools in high-speed milling of FGH96 superalloys[J]. Ceramics International, 2021, 47(1):149-156.
[15] KURSUNCU B, CALISKAN H, GUVEN S Y, et al. Improvement of cutting performance of carbide cutting tools in milling of the Inconel 718 superalloy using multilayer nanocomposite hard coating and cryogenic heat treatment[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1-4):467-479.
[16] 刘志东. 放电诱导可控烧蚀高效加工典型工艺方法[J]. 电加工与模具, 2012(1):1-6. LIU Z D. Series typical efficient machining methods of controllable burning by discharge-induced[J]. Electromachining & Mould, 2012(1):1-6(in Chinese).
[17] 王祥志, 刘志东, 邱明波, 等. 气体压力对钛合金电火花诱导烧蚀加工的影响[J]. 航空学报, 2014, 35(12):3480-3488. WANG X Z, LIU Z D, QIU M B, et al. Influence of gas pressure on EDM ablation of titanium alloy[J]. Acta Aeronautica et Astronautica Sinica 2014, 35(12):3480-3488(in Chinese).
[18] 徐安阳, 刘志东, 李文沛, 等. 功能电极烧蚀加工典型难加工材料实验研究[J]. 南京航空航天大学学报, 2014, 46(5):763-768. XU A Y, LIU Z D, LI W P, et al. Experimental study on function electrode ablation machining of difficult-to-machine materials[J]. Journal of Nanjing University of Aeronautics & Astronautics 2014, 46(5):763-768(in Chinese).
[19] ZHU G, ZHANG M, ZHANG Q H, et al. High-speed vibration-assisted electro-arc machining[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(9-12):3121-3129.
[20] ZHAO W S, GU L, XU H, et al. A novel high efficiency electrical erosion process-blasting erosion arc machining[J]. Procedia CIRP, 2013, 6:621-625.
[21] FARHADI A, ZHU Y M, GU L, et al. Electric arc sweep milling of open channels[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(1-4):673-683.
[22] JIA Y C, CHI G X, SHEN Y, et al. Electrode design using revolving entity extraction for high-efficiency electric discharge machining of integral shrouded blisk[J]. Chinese Journal of Aeronautics, 2020, 34(6):178-187.
[23] KOU Z J, HAN F Z. On sustainable manufacturing titanium alloy by high-speed EDM milling with moving electric arcs while using water-based dielectric[J]. Journal of Cleaner Production, 2018, 189:78-87.
[24] KOU Z J, HAN F Z, WANG G S. Research on machining Ti6Al4V by high-speed electric arc milling with breaking arcs via mechanical-hydrodynamic coupling forces[J]. Journal of Materials Processing Technology, 2019, 271:499-509.
[25] JOSHI S, GOVINDAN P, MALSHE A, et al. Experimental characterization of dry EDM performed in a pulsating magnetic field[J]. CIRP Annals, 2011, 60(1):239-242.
[26] WANG F, LIU Y H, ZHANG Y Z, et al. Compound machining of titanium alloy by super high speed EDM milling and arc machining[J]. Journal of Materials Processing Technology, 2014, 214(3):531-538.
[27] SHEN Y, LIU Y H, SUN W Y, et al. High-speed near dry electrical discharge machining[J]. Journal of Materials Processing Technology, 2016, 233:9-18.