Due to the uncertain target inertia parameters and the internal stress at grasping points, excessive contact wrenches may be applied to the target at grasping points during the stabilization of the non-cooperative target, and therefore the safety of the dual-arm space robot end-effectors cannot be guaranteed. To solve this problem, a coordinated stabilization control scheme is proposed. The desired trajectory of the dual-arm space robot is coordinately adjusted to achieve compliant interactions at grasping points, where the contact wrenches can be reduced during the stabilization process. To realize this coordinated stabilization control, firstly, a desired trajectory is planned with inaccurate parameters of the target. Then, to achieve compliant interactions, a safe stabilization trajectory is obtained by adjusting the desired trajectory with the help of a dual loop structure constructed by compliant equations considering the influences of the uncertain inertia parameters and the internal stress respectively. Finally, to achieve the safe stabilization with compliant interactions, a barrier Lyapunov function based tracking controller is developed to coordinately control the dual-arm space robot, where the control performance can be restrained. The effectiveness and feasibility of the proposed coordinated stabilization control scheme are validated via digital simulations.
XIA Pengcheng
,
LUO Jianjun
,
WANG Mingming
,
TAN Longyu
. Coordinated stabilization control for dual-arm space robot capturing a non-cooperative target[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022
, 43(2)
: 325398
-325398
.
DOI: 10.7527/S1000-6893.2021.25398
[1] AKIN D, SULLIVAN B. A survey of serviceable spacecraft failures[C]//AIAA Space Conference & Exposition, 2001:4540.
[2] FLORES-ABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68:1-26.
[3] KEMBLE S. Automated rendezvous and docking of spacecraft[J]. Proceedings of the Institution of Mechanical Engineers, 2007, 221(6):997.
[4] REMBALA R, OWER C. Robotic assembly and maintenance of future space stations based on the ISS mission operations experience[J]. Acta Astronautica, 2009, 65(7-8):912-920.
[5] DIMITROV D N, YOSHIDA K. Momentum distribution in a space manipulator for facilitating the post-impact control[C]//2004 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), 2004:3345-3350.
[6] OKI T, NAKANISHI H, YOSHIDA K. Time-optimal manipulator control for management of angular momentum distribution during the capture of a tumbling target[J]. Advanced Robotics, 2010, 24(3):441-466.
[7] OKI T, NAKANISHI H, YOSHIDA K. Whole-body motion control for capturing a tumbling target by a free-floating space robot[C]//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007:2256-2261.
[8] ZAPPA B, LEGNANI G, ADAMINI R. Path planning of free-flying space manipulators:An exact solution for polar robots[J]. Mechanism and Machine Theory, 2005, 40(7):806-820.
[9] 万文娅, 孙冲, 袁建平. 空间非合作目标多指包络抓捕路径设计[J]. 航空学报, 2020, 41(12):324041. WAN W Y, SUN C, YUAN J P. Multi-finger caging-based gripping path design for space non-cooperative targets[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12):324041(in Chinese).
[10] 羊帆,张国良,原磊. 自由漂浮空间机器人末端轨迹优化跟踪控制[J]. 宇航学报, 2016, 37(7):846-853. YANG F, ZHANG G L, YUAN L. End-effector optimal tracking control of free-floating space robot[J]. Journal of Astronautics, 2016, 37(7):846-853(in Chinese).
[11] WANG M M, LUO J J, YU M, et al. Detumbling control for kinematically redundant space manipulator post-grasping a rotational satellite[J]. Acta Astronautica, 2017, 141:98-109.
[12] LUO J J, YU M, WANG M M, et al. A fast trajectory planning framework with task-priority for space robot[J]. Acta Astronautica, 2018, 152:823-835.
[13] 周逸群,罗建军,王明明. 空间机器人抓捕目标后的载荷分配-空间机器人专刊[J]. 航空学报, 2021,42(1):523915. ZHOU Y Q, LUO J J, WANG M M. Load distribution for space robot after capturing the target[J]. Acta Aeronautica et Astronautica Sinica, 2021,42(1):523915. (in Chinese).
[14] NGUYEN-HUYNH T C, SHARF I. Adaptive reactionless motion and parameter identification in post-capture of space debris[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2):404-414.
[15] PIERSIGILLI P, SHARF I, MISRA A K. Reactionless capture of a satellite by a two degree-of-freedom manipulator[J]. Acta Astronautica, 2010, 66(1-2):183-192.
[16] ABIKO S, HIRZINGER G. An adaptive control for a free-floating space robot by using inverted chain approach[C]//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007:2236-2241.
[17] 张福海, 付宜利, 王树国. 惯性参数不确定的自由漂浮空间机器人自适应控制研究[J]. 航空学报, 2012, 33(12):2347-2354. ZHANG F H, FU Y L, WANG S G. Adaptive control of free-floating space robot with inertia parameter uncertainties[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12):2347-2354(in Chinese).
[18] 梁捷, 陈力. 漂浮基空间机器人捕获卫星过程动力学模拟及捕获后混合体运动的RBF神经网络控制[J]. 航空学报, 2013, 34(4):970-978. LIANG J, CHEN L. Dynamic modeling for free-floating space-based robot during satellite capture and RBF neural network control for compound body stable movement[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):970-978(in Chinese).
[19] HOGAN N. Impedance Control:An approach to manipulation[C]//1984 American Control Conference, 1984:304-313.
[20] CACCAVALE F, NATALE C, SICILIANO B, et al. Six-DOF impedance control based on angle/axis representations[J]. IEEE Transactions on Robotics and Automation, 1999, 15(2):289-300.
[21] YOSHIDA K, NAKANISHI H. Impedance matching in capturing a satellite by a space robot[C]//Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 2003), 2003:3059-3064.
[22] RASTEGARI R, MOOSAVIAN S A A. Multiple impedance control of space free-flying robots via virtual linkages[J]. Acta Astronautica, 2010, 66(5-6):748-759.
[23] ABIKO S, HIRZINGER G. On-line parameter adaptation for a momentum control in the post-grasping of a tumbling target with model uncertainty[C]//2007 IEE-E/RSJ International Conference on Intelligent Robots and Systems. 2007:847-852.
[24] XIA P C, LUO J J, WANG M M, et al. Constrained compliant control for space robot post-capturing uncertain target[J]. Journal of Aerospace Engineering, 2018, 32(1):04018117.
[25] STOLFI A, GASBARRI P, SABATINI M. A combined impedance-PD approach for controlling a dual-arm space manipulator in the capture of a non-cooperative target[J]. Acta Astronautica, 2017, 139:243-253.
[26] UYAMA N, NARUMI T. Hybrid impedance/position control of a free-flying space robot for detumbling a noncooperative Satellite[J]. IFAC-PapersOnLine, 49(17):230-235.
[27] REN Y, LIU Y, JIN M, et al. Biomimetic object impedance control for dual-arm cooperative 7-DOF manipulators[J]. Robotics and Autonomous Systems, 2016, 75:273-287.