Articles

Micro electrical chemical machining for efficient fabricating large aspect ratio micro electrodes by critical gap method

  • PENG Zilong ,
  • LIU Cong ,
  • LI Yinan ,
  • LAN Hongbo
Expand
  • 1. Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao 266520, China 2. Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao University of Technology, Qingdao 266520, China

Received date: 2021-01-28

  Revised date: 2021-03-01

  Online published: 2021-06-29

Supported by

National Natural Science Foundation of China (51875300, 51871128); Major Project of Shandong Province Natural Science Foundation (ZR2020ZD04); Shandong Province Natural Science Foundation (ZR2017MEE012, ZR2018MEE017)

Abstract

A micro Electrical Chemical Machining (μ-ECM) method based on critical gap control for efficient fabricating micro electrodes with large aspect ratio was proposed. Using strong alkaline electrolyte and microsecond power supply, the micron level precise removal of tungsten electrode can be controlled. The micro process of material removal in μ-ECM was analyzed. The process parameters for precise control of material removal based on critical gap have been determined by simulating the gap current density of different gap distance. The mathematical model of electrode material removal process was established, and the material removal law was obtained. The effects of gap voltage, pulse width and electrolyte concentration on the removal rate of micro electrode materials were studied. As a result, a micro electrode with diameter of 10 μm and aspect ratio of more than 200 was obtained by using the optimized process parameters. The maximum material removal rate can reach 2.7×10-2 mm3/min, which is an order of magnitude higher than the current other methods.

Cite this article

PENG Zilong , LIU Cong , LI Yinan , LAN Hongbo . Micro electrical chemical machining for efficient fabricating large aspect ratio micro electrodes by critical gap method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(4) : 525339 -525339 . DOI: 10.7527/S1000-6893.2021.25339

References

[1] EPSTEIN A H, SENTURIA S D, ANATHASURESH G, et al. Power MEMS and microengines[C]//Proceedings of International Solid State Sensors and Actuators Conference. Piscataway:IEEE Press, 1997:753-756.
[2] EPSTEIN A H. Millimeter-scale, micro-electro-mechanical systems gas turbine engines[J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(2):205-226.
[3] DONG Y H, WANG Z L, PENG Z L, et al. Design and fabrication of the micro turbine for micro gas turbine engine[J]. Advanced Materials Research, 2009, 69-70:530-534.
[4] QI X X, FANG X L, ZHU D. Investigation of electrochemical micromachining of tungsten microtools[J]. International Journal of Refractory Metals and Hard Materials, 2018, 71:307-314.
[5] LIU Y, ZHU D, ZENG Y B, et al. Experimental investigation on complex structures machining by electrochemical micromachining technology[J]. Chinese Journal of Aeronautics, 2010, 23(5):578-584.
[6] 张明君, 殷国富, 袁光辉. 大长径比微细轴的车削工艺研究[J]. 机械工程学报, 2005, 41(2):137-141. ZHANG M J, YIN G F, YUAN G H. Study on turning technics of big diameter-length rate micro-shaft[J]. Journal of Mechanical Engineering, 2005, 41(2):137-141(in Chinese).
[7] OHMORI H, KATAHIRA K, NARUSE T, et al. Microscopic grinding effects on fabrication of ultra-fine micro tools[J]. CIRP Annals, 2007, 56(1):569-572.
[8] YAMAZAKI M, SUZUKI T, MORI N, et al. EDM of micro-rods by self-drilled holes[J]. Journal of Materials Processing Technology, 2004, 149(1-3):134-138.
[9] TAKEZAWA H, HAMAMATSU H, MOHRI N, et al. Development of micro-EDM-center with rapidly sharpened electrode[J]. Journal of Materials Processing Technology, 2004, 149(1-3):112-116.
[10] 王振龙, 朱保国, 田锡清. 气体介质中深小孔电火花加工技术研究[J]. 航空学报, 2007, 28(2):460-463. WANG Z L, ZHU B G, TIAN X Q. Research on dry EDM for deep and small holes[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2):460-463(in Chinese).
[11] PATRO S K, MISHRA D K, ARAB J, et al. Numerical and experimental analysis of high-aspect-ratio micro-tool electrode fabrication using controlled electrochemical machining[J]. Journal of Applied Electrochemistry, 2020, 50(2):169-184.
[12] HAN W, KUNIEDA M. Fabrication of tungsten micro-rods by ECM using ultra-short-pulse bipolar current[J]. CIRP Annals, 2017, 66(1):193-196.
[13] LU Z N, YONEYAMA T. Micro cutting in the micro lathe turning system[J]. International Journal of Machine Tools and Manufacture, 1999, 39(7):1171-1183.
[14] ONIKURA H, OHNISHI O, TAKE Y, et al. Fabrication of micro carbide tools by ultrasonic vibration grinding[J]. CIRP Annals, 2000, 49(1):257-260.
[15] XU W X, WU Y B. A novel approach to fabricate high aspect ratio micro-rod using ultrasonic vibration-assisted centreless grinding[J]. International Journal of Mechanical Sciences, 2018, 141:21-30.
[16] MASUZAWA T, FUJINO M, KOBAYASHI K, et al. Wire electro-discharge grinding for micro-machining[J]. CIRP Annals, 1985, 34(1):431-434.
[17] SINGH A K, PATOWARI P K, DESHPANDE N V. Experimental analysis of reverse micro-EDM for machining microtool[J]. Materials and Manufacturing Processes, 2016, 31(4):530-540.
[18] YIN Q F, WANG X Q, WANG P, et al. Fabrication of micro rod electrode by electrical discharge grinding using two block electrodes[J]. Journal of Materials Processing Technology, 2016, 234:143-149.
[19] LIM Y M, KIM S H. An electrochemical fabrication method for extremely thin cylindrical micropin[J]. International Journal of Machine Tools and Manufacture, 2001, 41(15):2287-2296.
[20] LIM H J, LIM Y M, KIM S H. Fabrication of arbitrarily shaped microelectrodes by electrochemical etching[J]. Japanese Journal of Applied Physics, 2003, 42(3):1479-1485.
[21] HAN W, KUNIEDA M. Wire electrochemical grinding of tungsten micro-rods using neutral electrolyte[J]. Precision Engineering, 2018, 52:458-468.
[22] MATHEW R, SUNDARAM M M. Modeling and fabrication of micro tools by pulsed electrochemical machining[J]. Journal of Materials Processing Technology, 2012, 212(7):1567-1572.
[23] 刘勇, 朱荻, 曾永彬, 等. 微细电解铣削加工模型及实验研究[J]. 航空学报, 2010, 31(9):1864-1871. LIU Y, ZHU D, ZENG Y B, et al. Theoretical and experimental research on micro electrochemical milling[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9):1864-1871(in Chinese).
[24] NGUYEN M D, RAHMAN M, WONG Y S. Modeling of radial gap formed by material dissolution in simultaneous micro-EDM and micro-ECM drilling using deionized water[J]. International Journal of Machine Tools and Manufacture, 2013, 66:95-101.
[25] 李名鸿, 刘勇, 郭春生, 等. 高回转精度微柱状电极电化学加工模型及试验[J]. 航空学报, 2016, 37(12):3864-3872. LI M H, LIU Y, GUO C S, et al. Model and experimental on fabrication of cylindrical micro electrode with high rotation accuracy by electrochemical machining[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3864-3872(in Chinese).
[26] GU M C, ZENG Y B, MENG L C. Electrochemical micromachining of square holes in stainless steel in H2SO4[J]. International Journal of Electrochemical Science, 2019,14:414-426.
[27] AHN S H, RYU S H, CHOI D K, et al. Electro-chemical micro drilling using ultra short pulses[J]. Precision Engineering, 2004, 28(2):129-134.
[28] 李小海, 王振龙, 赵万生. 高频窄脉冲电流微细电解加工[J]. 机械工程学报, 2006, 42(1):162-167. LI X H, WANG Z L, ZHAO W S. Electrolytic micromachining with high frequency short pulse current[J]. Journal of Mechanical Engineering, 2006, 42(1):162-167(in Chinese).
[29] LI Y, ZHENG Y F, YANG G, et al. Localized electrochemical micromachining with gap control[J]. Sensors and Actuators A:Physical, 2003, 108(1-3):144-148.
[30] ZENG Z Q, WANG Y K, WANG Z L, et al. A study of micro-EDM and micro-ECM combined milling for 3D metallic micro-structures[J]. Precision Engineering, 2012, 36(3):500-509.
[31] RAVI N, CHUAN S X. The effects of electro-discharge machining block electrode method for microelectrode machining[J]. Journal of Micromechanics and Microengineering, 2002, 12(5):532-540.
Outlines

/