Multi-region integrated design and optimization of concentrated-force diffusion component in heavy-lift launch vehicle

  • WANG Zhixiang ,
  • LEI Yongjun ,
  • DUAN Jingbo ,
  • OUYANG Xing ,
  • ZHANG Dapeng ,
  • WANG Jie
Expand
  • 1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China;
    2. Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Missions, Changsha, 410073, China;
    3. Department of Engineering Mechanics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China;
    4. Beijing Institute of Aerospace Systems Engineering, Beijing 100076, China

Received date: 2020-12-22

  Revised date: 2021-04-19

  Online published: 2021-06-29

Supported by

National Key R&D Program of China(2017YFB0306200);National Natural Science Foundation of China(11902348);National Science Foundation of Hunan Province(2020 JJ5650);Science Project of the National University of Defense Technology(ZK20-27)

Abstract

To improve the load-carrying capacity and concentrated-force diffusion performance, a novel integrated design method combining variable profile, proportional layout and multi-region design, along with optimization model based on the static analysis and engineering estimat method is proposed for the optimal design of the concentrated-force diffusion component in the heavy-lift launch vehicle.parametric finite element model is for the concentrated-force diffusion component, of which the load-carrying capacity and concentrated-force diffusion performance are analyzed.According to the structural form and load-carrying characteristic of the concentrated-force diffusion component, an integrated design method of variable thickness, variable profiles and proportional layout is proposed for the detailed design.To comprehensively improve the load-carrying capacity and concentrated-force diffusion performance, an optimization model based on the static analysis and engineering estimat method is solved by the simulated annealing method, thereby an optimized structure with weight reduction.The comparison results show that it beneficial to improve the load-carrying efficiency and concentrated-force diffusion performance the auxiliary-beams/stringers on both sides of the strap-on devices densely close to strap-on devices the auxiliary-beams between strap-on devices densely far away from strap-on devices, main-beams with variable profile and skin with variable thickness.The effectiveness and superiority of the proposed integrated design method and optimization model are validated for the prospect of engineering application.

Cite this article

WANG Zhixiang , LEI Yongjun , DUAN Jingbo , OUYANG Xing , ZHANG Dapeng , WANG Jie . Multi-region integrated design and optimization of concentrated-force diffusion component in heavy-lift launch vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(3) : 225135 -225135 . DOI: 10.7527/S1000-6893.2021.25135

References

[1] 龙乐豪, 郑立伟.关于重型运载火箭若干问题的思考[J].宇航总体技术, 2017, 1(1):8-12. LONG L H, ZHENG L W.Consideration of some issues on the heavy launch vehicle[J].Astronautical Systems Engineering Technology, 2017, 1(1):8-12(in Chinese).
[2] 叶定友, 高波, 甘晓松, 等.重型运载火箭大型固体助推器技术研究[J].载人航天, 2011, 17(1):34-39. YE D Y, GAO B, GAN X S, et al.Study on large solid booster technology for heavy launch vehicle[J].Manned Spaceflight, 2011, 17(1):34-39(in Chinese).
[3] 何巍, 刘伟, 龙乐豪.重型运载火箭及其应用探讨[J].导弹与航天运载技术, 2011(1):1-5. HE W, LIU W, LONG L H.Heavy launch vehicle and its application[J].Missiles and Space Vehicles, 2011(1):1-5(in Chinese).
[4] 张智, 容易, 秦曈, 等.重型运载火箭总体技术研究[J].载人航天, 2017, 23(1):1-7. ZHANG Z, RONG Y, QIN T, et al.Research on overall technology of heavy launch vehicle[J].Manned Spaceflight, 2017, 23(1):1-7(in Chinese).
[5] 王志祥, 顾名坤, 雷勇军, 等.大型运载火箭助推器超静定捆绑方案研究[J].振动与冲击, 2020, 39(4):129-135. WANG Z X, GU M K, LEI Y J, et al.A study on the scheme of large hyper-static strap-on launch vehicles[J].Journal of Vibration and Shock, 2020, 39(4):129-135(in Chinese).
[6] 王志刚, 杨宇, 段世慧.基于参数化分析的柔性后缘优化设计[J].航空学报, 2017, 38(S1):721562. WANG Z G, YANG Y, DUAN S H.Optimal design of adaptive compliant trailing edge based on parametric analysis[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(Sup 1):721562(in Chinese).
[7] 金栋平, 纪斌.机翼后缘柔性支撑结构的拓扑优化[J].航空学报, 2015, 36(8):2681-2687. JIN D P, JI B.Topology optimization of flexible support structure for trailing edge[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2681-2687(in Chinese).
[8] 龙凯, 陈卓, 谷春璐, 等.考虑承载面最大位移约束的结构拓扑优化方法[J].航空学报, 2020, 41(7):223577. LONG K, CHEN Z, GU C L, et al.Structural topology optimization method with maximum displacement constraint on load-bearing surface[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(7):223577(in Chinese).
[9] 牛飞, 王博, 程耿东.基于拓扑优化技术的集中力扩散结构设计[J].力学学报, 2012, 44(3):528-536. NIU F, WANG B, CHENG G D.Optimum topology design of structural part for concentration force transmission[J].Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(3):528-536(in Chinese).
[10] 牛飞.结构拓扑优化设计若干问题的建模、求解及解读[D].大连:大连理工大学, 2013. NIU F.Modeling, solution and interpretation of several structural topological optimum designs[D].Dalian:Dalian University of Technology, 2013(in Chinese).
[11] 张家鑫.集中力扩散结构的优化设计[D].大连:大连理工大学, 2014. ZHANG J X.Design optimization of concentrated force diffusion structures[D].Dalian:Dalian University of Technology, 2014(in Chinese).
[12] 张家鑫, 王博, 牛飞, 等.分级型放射肋短壳结构集中力扩散优化设计[J].计算力学学报, 2014, 31(2):141-148, 240. ZHANG J X, WANG B, NIU F, et al.Optimal design of concentrated force diffusion for short shell structure using hierarchical radial ribs[J].Chinese Journal of Computational Mechanics, 2014, 31(2):141-148, 240(in Chinese).
[13] 张晓颖, 李林生, 吴会强, 等.薄壁贮箱集中力扩散研究[J].强度与环境, 2016, 43(5):38-44. ZHANG X Y, LI L S, WU H Q, et al.Research on concentrated force diffusion for weld thin-wall tank[J].Structure & Environment Engineering, 2016, 43(5):38-44(in Chinese).
[14] CAO Y F, GU X J, ZHU J H, et al.Precise output loads control of load-diffusion components with topology optimization[J].Chinese Journal of Aeronautics, 2020, 33(3):933-946.
[15] GAO T, QIU L B, ZHANG W H.Topology optimization of continuum structures subjected to the variance constraint of reaction forces[J].Structural and Multidisciplinary Optimization, 2017, 56(4):755-765.
[16] WANG C, ZHU J H, WU M Q, et al.Multi-scale design and optimization for solid-lattice hybrid structures and their application to aerospace vehicle components[J].Chinese Journal of Aeronautics, 2021, 34(5):386-398.
[17] 梅勇, 冯韶伟, 雷勇军, 等.捆绑联接舱段集中力扩散结构优化设计[J].机械设计与制造, 2016(3):200-203. MEI Y, FENG S W, LEI Y J, et al.Structural optimization of the concentrated force diffusion structure in strap-on linkage section[J].Machinery Design & Manufacture, 2016(3):200-203(in Chinese).
[18] 梅勇.重型运载火箭捆绑传力路径与集中力扩散结构优化设计[D].长沙:国防科技大学, 2015. MEI Y.Optimization design of strap-on force transmission path and concentrated force diffusion structure for heavy launch vehicle[D].Changsha:National University of Defense Technology, 2015(in Chinese).
[19] 李增聪, 陈燕, 李红庆, 等.面向集中力扩散的回转曲面加筋拓扑优化方法[J].航空学报, 2021,42(9):224616. LI Z C, CHEN Y, LI H Q, et al.Topology optimization method for concentrated force diffusion on stiffened curved shell of revolution[J].Acta Aeronautica et Astronautica Sinica, 2021,42(9):224616(in Chinese).
[20] 陈献平, 鄢东洋, 姚瑞娟, 等.轻质箭体结构优化设计[J].导弹与航天运载技术, 2019(2):17-21, 43. CHEN X P, YAN D Y, YAO R J, et al.Optimization design of the rocket structure[J].Missiles and Space Vehicles, 2019(2):17-21, 43(in Chinese).
[21] 李道奎, 刘大泉, 李海阳, 等.工程力学[M].北京:科学出版社, 2015:379-395. LI D K, LIU D Q, LI H Y, et al.Engineering mechanics[M].Beijing:Science Press, 2015:379-395(in Chinese).
Outlines

/