Special Topic of NNW Progress and Application

Large-eddy simulation of external and internal coupling flow in high back pressure inlet

  • WANG Dexin ,
  • CHU Youbiao ,
  • LIU Nansheng ,
  • LI Zhufei ,
  • YANG Jiming
Expand
  • 1. Key Laboratory of Defense Science and Technology of Combusion, Themostructure and Flow of SRM, The 41 st Institute of the Fourth Academy of CASA, Xi'an 710025, China;
    2. Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China

Received date: 2021-03-30

  Revised date: 2021-05-06

  Online published: 2021-06-08

Supported by

National Numerical Windtunnel Project; National Natural Science Foundation of China (11772325, 11572312, 11621-202, 92052301); Science Challenge Project (TZ2016001)

Abstract

The airflow in an axisymmetric inlet with an outlet throttling ratio of 50.8% has been investigated using large eddy simulation, primarily focusing on the unsteady characteristics of the external and internal coupling oscillatory flow. The simulation is based on the software of National Numerical Windtunnel (NNW) Project. Contributions of the averaged wall pressure and its fluctuating part have been validated against experimental measurements. Various fundamental phenomena, including the flow structures, unsteady shock waves, and fluctuating pressure have been studied systematically. It is found that the shock train is induced in the throat region to match the backpressure, and accordingly three typical flow regions are classified as the supersonic region, shock train region, and subsonic region. Coupling dynamics between the shock/shear-layer/separated boundary layer are formed in the shock train region as a result of the adverse pressure gradient. With the quasi-periodic unsteady fluid motions in the shock train region, the fluctuating pressure exhibits a broadband spectral feature. The temporal and spatial distributions of the fluctuating pressure are analyzed, which indicates that the fluctuating pressure propagates in the subsonic region in a form of disturbance wave. A feedback model is proposed giving a reasonable prediction of the dominant frequency in the downstream of shock train. Based on the correlation analysis, it is demonstrated that the unsteady motions of the shock train is influenced by the coupling of the upstream and downstream flows. Specifically, it contains an unsteady motion of frequency St=0.7 which is a signature of the upstream flow, and another of frequency St=0.9 that is a signature of the downstream flow.

Cite this article

WANG Dexin , CHU Youbiao , LIU Nansheng , LI Zhufei , YANG Jiming . Large-eddy simulation of external and internal coupling flow in high back pressure inlet[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(9) : 625754 -625754 . DOI: 10.7527/S1000-6893.2021.25754

References

[1] HEISER W, PRATT D, DALEY D, et al. Hypersonic airbreathing propulsion[M].Reston:AIAA, 1994:197-267.
[2] BILLIG F S. Combustion processes in supersonic flow[J]. Journal of Propulsion and Power, 1988, 4(3):209-216.
[3] CURRAN E T, HEISER W H, PRATT D T. Fluidphenomena in scramjet combustion systems[J]. Annual Review of Fluid Mechanics, 1996, 28(1):323-360.
[4] MATSUO K, MIYAZATO Y, KIM H D. Shock train and pseudo-shock phenomena in internal gas flows[J]. Progress in Aerospace Sciences, 1999, 35(1):33-100.
[5] OSWATITSCH K. Der druckrückgewinn bei geschossen mit rückstossantrieb bei hohen übershallgeschwindigkeiten (der wirkungsgrad vos stossdiffusoren)[R]. 1944.
[6] SAJBEN M, KROUTIL J C. Effects of initial boundary-layer thickness on transonic diffuser flows[J]. AIAA Journal, 1981, 19(11):1386-1393.
[7] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research:what next?[J]. AIAA Journal, 2001, 39(8):1517-1531.
[8] TAN H J, SUN S. Preliminary study of shock train in a curved variable-section diffuser[J]. Journal of Propulsion and Power, 2008, 24(2):245-252.
[9] WEISS A, GRZONA A, OLIVIER H. Behavior of shock trains in a diverging duct[J]. Experiments in Fluids, 2010, 49(2):355-365.
[10] MORGAN B, DURAISAMY K, LELE S K. Large-eddy simulations of a normal shock train in a constant-area isolator[J]. AIAA Journal, 2014, 52(3):539-558.
[11] SU W Y, ZHANG K Y. Back-pressure effects on the hypersonic inlet-isolator pseudoshock motions[J]. Journal of Propulsion and Power, 2013, 29(6):1391-1399.
[12] KLOMPARENS R, GAMBA M, DRISCOLL J F. Boundary layer separation in a 3D shock train[C]//53rd AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015.
[13] GNANI F, ZARE-BEHTASH H, KONTIS K. Pseudo-shock waves and their interactions in high-speed intakes[J]. Progress in Aerospace Sciences, 2016, 82:36-56.
[14] WANG C P, CHENG C, CHENG K M, et al. Unsteady behavior of oblique shock train and boundary layer interactions[J]. Aerospace Science and Technology, 2018, 79:212-222.
[15] 田旭昂, 王成鹏, 程克明. Ma5斜激波串动态特性实验研究[J]. 推进技术, 2014, 35(8):1030-1039. TIANX A, WANG C P, CHENG K M.Experimental investigation of dynamic characteristics of oblique shock train in Mach 5 flow[J]. Journal of Propulsion Technology, 2014, 35(8):1030-1039(in Chinese).
[16] BUR R, CORBEL B, DELERY J. Study of passive control in a transonic shock wave/boundary-layer interaction[J]. AIAA Journal, 1998, 36(3):394-400.
[17] BENAY R, BERTHOUZE P, BUR R. Modeling of controlled shock-wave/boundary-layer interactions in transonic channel flow[J]. AIAA Journal, 2001, 39:2293-2301.
[18] BRUCE P J K, BABINSKY H. Unsteady shock wave dynamics[J]. Journal of Fluid Mechanics, 2008, 603:463-473.
[19] WAGNER J L, YUCEIL K B, CLEMENS N T. Velocimetry measurements of unstart of an inlet-isolator model in Mach 5 flow[J]. AIAA Journal, 2010, 48(9):1875-1888.
[20] 曹学斌, 张堃元. 超燃冲压发动机隔离段非对称来流下激波串受迫振荡流动研究[J]. 空气动力学学报, 2011, 29(2):135-141. CAO X B, ZHANG K Y. Experimental study of forced shock train in isolator under asymmetric incoming flow[J]. Acta Aerodynamica Sinica, 2011, 29(2):135-141(in Chinese).
[21] CHEN C P, SAJBEN M, KROUTIL J C. Shock-wave oscillations in a transonic diffuser flow[J]. AIAA Journal, 1979, 17(10):1076-1083.
[22] BOGAR T J, SAJBEN M, KROUTIL J C. Characteristic frequencies of transonic diffuser flow oscillations[J]. AIAA Journal, 1983, 21(9):1232-1240.
[23] LI Z F, GAO W Z, JIANG H L, et al. Unsteady behaviors of a hypersonic inlet caused by throttling in shock tunnel[J]. AIAA Journal, 2013, 51(10):2485-2492.
[24] CHENG C, WANG C P, CHENG K M, et al. Experimental study of unsteady oblique shock train and boundary layer interactions[C]//21 st AIAA International Space Planes and Hypersonics Technologies Conference. Reston:AIAA, 2017.
[25] JIAO X L, CHANG J T, WANG Z Q, et al. Periodic forcing of a shock train in a scramjet inlet-isolator at overspeed condition[J]. Acta Astronautica, 2018, 143:244-254.
[26] NEWSOME R W. Numerical simulation of near-critical and unsteady, subcritical inlet flow[J]. AIAA Journal, 1984, 22(10):1375-1379.
[27] LU P J, JAIN L T. Numerical investigation of inlet buzz flow[J]. Journal of Propulsion and Power, 1998, 14(1):90-100.
[28] TRAPIER S, DUVEAU P, DECK S. Experimental study of supersonic inlet buzz[J]. AIAA Journal, 2006, 44(10):2354-2365.
[29] TRAPIER S, DECK S, DUVEAU P. Delayed detached-eddy simulation and analysis of supersonic inlet buzz[J]. AIAA Journal, 2008, 46(1):118-131.
[30] LEE H J, LEE B J, KIM S D, et al. Flow characteristics of small-sized supersonic inlets[J]. Journal of Propulsion and Power, 2011, 27(2):306-318.
[31] KRISHNAN L, SANDHAM N D, STEELANT J. Shock-wave/boundary-layer interactions in a model scramjet intake[J]. AIAA Journal, 2009, 47(7):1680-1691.
[32] KOO H, RAMAN V. Large-eddy simulation of a supersonic inlet-isolator[J]. AIAA Journal, 2012, 50(7):1596-1613.
[33] 陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J/OL]. 中国科学:技术科学, (2021-04-28)[2021-06-03]. https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese national numerical windtunnel project[J/OL]. Scientia Sinica Technologica, (2021-04-28)[2021-06-03]. https://kns.cnki.net/kcms/detail/11.5844.TH.20210428.0914.006.html (in Chinese).
[34] 高文智, 李祝飞, 杨基明. 一种鼻锥钝化高超声速轴对称进气道流动特性实验[J]. 航空学报, 2015, 36(1):302-310. GAO W Z, LI Z F, YANG J M. Flow characteristics experiments of a hypersonic axisymmetric inlet with nose bluntness[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):302-310(in Chinese).
[35] 高文智, 李祝飞, 曾亿山, 等. 前体涡发生器对轴对称高超声速进气道激波振荡流动的影响实验[J]. 力学学报, 2018, 50(2):209-220. GAO W Z, LI Z F, ZENG Y S, et al. Experimental investigations of effects of forebody vortex generators on the oscillatory flow of an axisymmetric hypersonic inlet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2):209-220(in Chinese).
[36] GAO W Z, LI Z F, YANG J M, et al. Effects of trips on the oscillatory flow of an axisymmetric hypersonic inlet with downstream throttle[J]. Chinese Journal of Aeronautics, 2018, 31(2):225-236.
[37] TAN H J, LI L G, WEN Y F, et al. Experimental investigation of the unstart process of a generic hypersonic inlet[J]. AIAA Journal, 2011, 49(2):279-288.
[38] LU X Y, WANG S W, SUNG H G, et al. Large-eddy simulations of turbulent swirling flows injected into a dump chamber[J]. Journal of Fluid Mechanics, 2005, 527:171-195.
[39] CHEN L W, XU C Y, LU X Y. Numerical investigation of the compressible flow past an aerofoil[J]. Journal of Fluid Mechanics, 2010, 643:97-126.
[40] CHEN L W, WANG G L, LU X Y. Numerical investigation of a jet from a blunt body opposing a supersonic flow[J]. Journal of Fluid Mechanics, 2011, 684:85-110.
[41] 王德鑫, 褚佑彪, 刘难生, 等. 凸拐角附近激波与湍流边界层干扰的数值模拟研究[J]. 空气动力学学报, 2020, 38(1):148-159. WANG D X, CHU Y B, LIU N S, et al. Numerical investigation of shock wave/boundary layer interactions near a convex corner[J]. Acta Aerodynamica Sinica, 2020, 38(1):148-159(in Chinese).
[42] PIROZZOLI S, GRASSO F. Direct numerical simulations of isotropic compressible turbulence:Influence of compressibility on dynamics and structures[J]. Physics of Fluids, 2004, 16(12):4386-4407.
[43] DECK S, THORIGNY P. Unsteadiness of an axisymmetric separating-reattaching flow:Numerical investigation[J]. Physics of Fluids, 2007, 19(6):065103.
[44] LARSSON J, LELE S K. Direct numerical simulation of canonical shock/turbulence interaction[J]. Physics of Fluids, 2009, 21(12):126101.
[45] CLEMENS N T, NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46(1):469-492.
[46] DUPONT P, HADDAD C, DEBIōVE J F. Space and time organization in a shock-induced separated boundary layer[J]. Journal of Fluid Mechanics, 2006, 559:255-277.
[47] PIPONNIAU S, DUSSAUGE J P, DEBIōVE J F, et al. A simple model for low-frequency unsteadiness in shock-induced separation[J]. Journal of Fluid Mechanics, 2009, 629:87-108.
[48] WU M W, PINO MARTÍN M. Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data[J]. Journal of Fluid Mechanics, 2008, 594:71-83.
[49] SOUVEREIN L J, DUPONT P, DEBIōVE J F, et al. Effect of interaction strength on unsteadiness in shock-wave-induced separations[J]. AIAA Journal, 2010, 48(7):1480-1493.
[50] PASQUARIELLO V, HICKEL S, ADAMS N A. Unsteady effects of strong shock-wave/boundary-layer interaction at high Reynolds number[J]. Journal of Fluid Mechanics, 2017, 823:617-657.
Outlines

/