Special Topic of NNW Progress and Application

Progress on application of National Numerical Windtunnel Project for hypersonic

  • CHEN Qi ,
  • CHEN Jianqiang ,
  • YUAN Xianxu ,
  • GUO Qilong ,
  • WAN Zhao ,
  • QIU Bo ,
  • LI Chen ,
  • ZHANG Yifeng
Expand
  • 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2021-03-30

  Revised date: 2021-05-06

  Online published: 2021-06-08

Supported by

National Numerical Windtunnel Project

Abstract

With the fast development of CFD techniques in recent years, CFD numerical simulation software has been widely used in the development of aircrafts, and plays an increasingly important role in most stages of aerospace and other fields. The National Numerical Windtunnel (NNW) Project adheres to the principle of "using while building". By integrating the software of structural mechanics, flight mechanics, engineering thermodynamics, acoustics, optics, electromagnetics, multiphase fluid mechanics and other disciplines, the project is playing an active role in aerospace, transportation, energy and power, environmental protection and disaster mitigation, and other disciplines. This paper summarizes the achievements of using the NNW software for hypersonic boundary layer transition, turbulence and high-order schemes. Development of applicaion of the NNW software for the problems of complex flow interaction, dynamic stability and multidisciplinary coupling simulation is also discussed. Cases are displayed to demonstrate the functions and characteristics of NNW software, so as to boost the spread and application of the software nationwide.

Cite this article

CHEN Qi , CHEN Jianqiang , YUAN Xianxu , GUO Qilong , WAN Zhao , QIU Bo , LI Chen , ZHANG Yifeng . Progress on application of National Numerical Windtunnel Project for hypersonic[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(9) : 625746 -625746 . DOI: 10.7527/S1000-6893.2021.25746

References

[1] 陈坚强. 国家数值风洞工程(NNW)关键技术研究进展[J/OL]. (2021-04-28)[2021-05-05]. 中国科学:技术科学, https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese National Numerical Wind Tunnel Project[J/OL]. (2021-04-28)[2021-05-05]. Scientia Sinica Technologica, https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html (in Chinese).
[2] ZHANG H X, ZHANG L P, ZHANG S H, et al. Some recent progress of high-order methods on structured and unstructured grids in CARDC[J]. Computers & Fluids, 2017, 154:371-389.
[3] LI C, CHEN J Q, YUAN X X, et al. Improved weighted NND scheme for shock-capturing[J]. Journal of Physics:Conference Series, 2021, 1786:012043.
[4] GUO Q L, SUN D, LI C, et al. A new discontinuity indicator for hybrid WENO schemes[J]. Journal of Scientific Computing, 2020, 83(2):1-33.
[5] LI C, SUN D, GUO Q L, et al. A new hybrid WENO scheme on a four-point stencil for Euler equations[J]. Journal of Scientific Computing, 2021, 87(1):1-37.
[6] ADLER M C, GONZALEZ D R, STACK C M, et al. Synthetic generation of equilibrium boundary layer turbulence from modeled statistics[J]. Computers & Fluids, 2018, 165:127-143.
[7] XU S, MARTIN M P. Assessment of inflow boundary conditions for compressible turbulent boundary layers[J]. Physics of Fluids, 2004, 16(7):2623-2639.
[8] BOOKEY P, WYCKHAM C, SMITS A. Experimental investigations of Mach 3 shock-wave turbulent boundary layer interactions[C]//35th AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2005.
[9] DUAN L, BEEKMAN I, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number[J]. Journal of Fluid Mechanics, 2011, 672:245-267.
[10] SUN D, GUO Q L, LI C, et al. Direct numerical simulation of effects of a micro-ramp on a hypersonic shock wave/boundary layer interaction[J]. Physics of Fluids, 2019, 31(12):126101.
[11] SUN D, GUO Q L, LI C, et al. Direct numerical simulation of effects of a micro-ramp on a hypersonic shock wave/boundary layer interaction[J]. Physics of Fluids, 2019, 31(12):126101.
[12] 袁先旭, 邓小兵, 谢昱飞, 等. 超声速湍流流场的RANS/LES混合计算方法研究[J]. 空气动力学学报, 2009, 27(6):723-728. YUAN X X, DENG X B, XIE Y F, et al. Research on the RANS/LES hybrid method for supersonic/hypersonic turbulence flow[J]. Acta Aerodynamica Sinica, 2009, 27(6):723-728(in Chinese).
[13] 孙东. 双三角翼背风区大范围分离与旋涡运动的DES模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2012. SUN D. The investigation of the massively separated flow and vortical flow on the leeward side of double-delta wing by using detached-eddy simulation[D]. Mianyang:China Aerodynamics Research and Development Center, 2012(in Chinese).
[14] MIKHAIL L S, PHILIPPE R S, MIKHAIL K S, et al. A hybird RANS-LES approach with delayed-DES and wall-modeled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29:1638-1649.
[15] FUJIIK K S. Computational study of a supersonic base flow using LES/RANS hybrid methodology[J]. AIAA Journal, 2005, 43(6):1265-1275.
[16] FRÖHLICH J, VON TERZI D. Hybrid LES/RANS methods for the simulation of turbulent flows[J]. Progress in Aerospace Sciences, 2008, 44(5):349-377.
[17] WU X H. Inflow turbulence generation methods[J]. Annual Review of Fluid Mechanics, 2017, 49(1):23-49.
[18] 郭启龙, 李辰, 刘朋欣, 等. 合成湍流对空腔流动RANS-LES混合模拟结果的影响[J]. 空气动力学学报, 2020, 38(5):980-988. GUO Q L, LI C, LIU P X, et al. Effect of synthetic turbulence on hybrid RANS-LES simulation of cavity flow[J]. Acta Aerodynamica Sinica, 2020, 38(5):980-988(in Chinese).
[19] 邓小兵. 不可压缩湍流大涡模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2007. DENG X B. Large Eddy simulation of incompressible turbulent flow[D]. Mianyang:China Aerodynamics Research and Development Center, 2007(in Chinese).
[20] KRAVCHENKO A G, MOIN P. Numerical studies of flow over a circular cylinder at ReD=3900[J]. Physics of Fluids, 2000, 12(2):403-417.
[21] 毛枚良, 闵耀兵, 王新光, 等. 可压缩湍流边界层壁面函数方法综述[J]. 空气动力学学报, 2021, 39(2):1-11. MAO M L, MIN Y B, WANG X G, et al. Overview of wall functions for compressible turbulent boundary layers[J]. Acta Aerodynamica Sinica, 2021, 39(2):1-11(in Chinese).
[22] TENNEKES H, LUMLEY J L. A first course in turbulence[M]. Cambridge:The MIT Press, 1972.
[23] NICHOLS R H, NELSON C C. Wall function boundary conditions including heat transfer and compressibility[J]. AIAA Journal, 2004, 42(6):1107-1114.
[24] DURBIN P A, BELCHER S E. Scaling of adverse-pressure-gradient turbulent boundary layers[J]. Journal of Fluid Mechanics, 1992, 238:699-722.
[25] CRAFT T J, GERASIMOV A V, IACOVIDES H, et al. Progress in the generalization of wall-function treatments[J]. International Journal of Heat and Fluid Flow, 2002, 23(2):148-160.
[26] WANG X G. Advanced RANS and near-wall turbulence modelling for high-speed flow[D]. Mancheste:University of Manchester, 2019.
[27] REDA D C, MURPHY J D. Shock wave/turbulent boundary-layer interactions in rectangular channels[J]. AIAA Journal, 1973, 11(2):139-140.
[28] SCHVLEIN E. Optical skin friction measurements in short-duration facilities (invited)[C]//24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston:AIAA, 2004.
[29] KUSSOY M I, HORSTMAN K C. Documentation of two-and three-dimensional shock-wave/turbulent-boundary-layer interaction flows at Mach 8.2[R]. Washington,D.C.:NASA, 1991.
[30] ROY C, BLOTTNER F. Review and assessment of turbulence models for hypersonic flows:2D/asymmetric cases[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2006.
[31] HADER C, FASEL H F. Three-dimensional wave packet in a Mach 6 boundary layer on a flared cone[J]. Journal of Fluid Mechanics, 2020, 885:R3.
[32] SIVASUBRAMANIAN J, FASEL H F. Numerical investigation of the development of three-dimensional wavepackets in a sharp cone boundary layer at Mach 6[J]. Journal of Fluid Mechanics, 2014, 756:600-649.
[33] HADER C, FASEL H F. Towards simulating natural transition in hypersonic boundary layers via random inflow disturbances[J]. Journal of Fluid Mechanics, 2018, 847:R3.
[34] SIVASUBRAMANIAN J, FASEL H F. Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6:fundamental breakdown[J]. Journal of Fluid Mechanics, 2015, 768:175-218.
[35] HADER C, LEINEMANN M, FASEL H F. Direct numerical simulations of hypersonic boundary-layer transition for a slender cone[C]//AIAA Aviation 2020 Forum. Reston:AIAA, 2020.
[36] DONG S W, CHEN J Q, YUAN X X, et al. Wall pressure beneath a transitional hypersonic boundary layer over an inclined straight circular cone[J]. Advances in Aerodynamics, 2020, 2:29.
[37] 国义军, 石卫波, 曾磊. 高超声速飞行器烧蚀防热理论与应用[M]. 北京:科学出版社, 2019:1-8. GUO Y J, SHI W B, ZENG L. Mechanism of ablative thermal protection applied to hypersonic vehicles[M]. Beijing:Science Press, 2019:1-8(in Chinese).
[38] 王希季. 航天器进入与返回技术[M]. 北京:中国宇航出版社, 2009:80-81. WANGX J. Spacecraft entry and return technology[M]. Beijing:China Aerospace Publishing House, 2009:80-81(in Chinese).
[39] 唐贵明. 狭窄缝隙内的热流分布实验研究[J]. 流体力学实验与测量, 2000, 14(4):1-6. TANG G M. Experimental investigation of heat transfer distributions in a deep gap[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(4):1-6(in Chinese).
[40] WEINSTEIN I, AVERY D E, CHAPMAN A J. Aerodynamic heating to the gaps and surfaces of simulated reusable-surface-insulation tile arrays in turbulent flow at Mach 6.6[R]. Washington,D.C.:NASA, 1975.
[41] VAN LEER B. Towards the ultimate conservative difference scheme. V.A second-order sequel to Godunov's method[J]. Journal of Computational Physics, 1979, 32(1):101-136.
[42] HAENEL D, SCHWANE R, SEIDER G. On the accuracy of upwind schemes for the solution of the Navier-Stokes equations[C]//8th Computational Fluid Dynamics Conference. Reston:AIAA, 1987.
[43] 李艳丽, 李素循. 高超声速绕钝舵层流干扰流场特性研究[J]. 宇航学报, 2007, 28(6):1472-1477. LI Y L, LI S X. Investigation of interactive hypersonic laminar flow over blunt fin[J]. Journal of Astronautics, 2007, 28(6):1472-1477(in Chinese).
[44] 罗金玲, 李超, 徐锦. 高超声速飞行器机体/推进一体化设计的启示[J]. 航空学报, 2015, 36(1):39-48. LUO J L, LI C, XU J. Inspiration of hypersonic vehicle with airframe/propulsion integrateddesign[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):39-48(in Chinese).
[45] LI N, CHANG J T, XU K J, et al. Oscillation of the shock train in an isolator with incident shocks[J]. Physics of Fluids, 2018, 30(11):116102.
[46] TAN H J, SUN S, HUANG H X. Behavior of shock trains in a hypersonic inlet/isolator model with complex background waves[J]. Experiments in Fluids, 2012, 53(6):1647-1661.
[47] SU W Y, JI Y X, CHEN Y. Effects of dynamic backpressure on pseudoshock oscillations in scramjet inlet-isolator[J]. Journal of Propulsion and Power, 2016, 32(2):516-528.
[48] WAGNER J L, YUCEIL K B, VALDIVIA A, et al. Experimental investigation of unstart in an inlet/isolator model in Mach 5 flow[J]. AIAA Journal, 2009, 47(6):1528-1542.
[49] IM S K, DO H. Unstart phenomena induced by flow choking in scramjet inlet-isolators[J]. Progress in Aerospace Sciences, 2018, 97:1-21.
[50] 谭慧俊, 卜焕先, 张启帆, 等. 高超声速进气道不起动问题的研究进展[J]. 南京航空航天大学学报, 2014, 46(4):501-508. TAN H J, BU H X, ZHANG Q F, et al. Review of hypersonic inlet unstart phenomenon[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(4):501-508(in Chinese).
[51] CAO R F, CHANG J T, TANG J F, et al. Switching control of thrust regulation and inlet unstart protection for scramjet engine based on Min strategy[J]. Aerospace Science and Technology, 2015, 40:96-103.
[52] SHEIKIN E, KURANOV A. Scramjet with MHD controlled inlet[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston:AIAA, 2005.
[53] 李素循. 近空间飞行器的气动复合控制原理及研究进展[J]. 力学进展, 2009, 39(6):740-755. LI S X. Progress in aerodynamics of combination control for vehicles at high speed[J]. Advances in Mechanics, 2009, 39(6):740-755(in Chinese).
[54] 唐志共, 杨彦广, 刘君, 等. 横向喷流干扰/控制研究进展[J]. 实验流体力学, 2010, 24(4):1-6. TANG Z G, YANG Y G, LIU J, et al. The investigation and expectation on lateral jet interaction/control[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(4):1-6(in Chinese).
[55] 许晨豪, 蒋崇文, 高振勋, 等. 高超声速飞行器反作用控制系统喷流干扰综述[J]. 力学与实践, 2014, 36(2):147-155, 160. XU C H, JIANG C W, GAO Z X, et al. The jet interaction effects of reaction control systems in hypersonic vehicles[J]. Mechanics in Engineering, 2014, 36(2):147-155, 160(in Chinese).
[56] 魏明英. 直接侧向力与气动力复合控制技术综述[J]. 现代防御技术, 2012, 40(1):52-54, 76. WEI M Y. Summary of blended control technology for missiles with lateral jets and aerodynamicsurfaces[J]. Modern Defence Technology, 2012, 40(1):52-54, 76(in Chinese).
[57] 贾倩, 魏明英, 郭大勇. 高空轨控式直接侧向力/气动力复合控制方法[J]. 现代防御技术, 2015, 43(6):61-67. JIA Q, WEI M Y, GUO D Y. Orbital lateral thrust/aerodynamic force blended controlmethodin high altitude[J]. Modern Defence Technology, 2015, 43(6):61-67(in Chinese).
[58] CASSEL L A. Applying jet interaction technology[J]. Journal of Spacecraft and Rockets, 2003, 40(4):523-537.
[59] DICKMANN D A, LU F K. Shock/boundary-layer interaction effects on transverse jets in crossflow over a flat plate[J]. Journal of Spacecraft and Rockets, 2009, 46(6):1132-1141.
[60] KUMAR D, STOLLERY J, SMITH A. Hypersonic jet control effectiveness[C]//International Aerospace Planes and Hypersonics Technologies. Reston:AIAA, 1995.
[61] 陈坚强, 张毅锋, 江定武, 等. 侧向多喷口干扰复杂流动数值模拟研究[J]. 力学学报, 2008, 40(6):735-743. CHEN J Q, ZHANG Y F, JIANG D W, et al. Numerical simulation of complex flow withmulti lateral jets interactions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6):735-743(in Chinese).
[62] 刘耀峰, 薄靖龙. 侧向喷流干扰流场建立与消退过程数值模拟[J]. 宇航学报, 2015, 36(8):877-884. LIU Y F, BO J L. Numerical simulation of establishment/vanishment process of lateral jet interaction flowfield[J]. Journal of Astronautics, 2015, 36(8):877-884(in Chinese).
[63] 杨彦广, 刘君, 唐志共. 横向喷流干扰中的真实气体效应研究[J]. 空气动力学学报, 2006, 24(1):28-33. YANG Y G, LIU J, TANG Z G. A study of real gas effects on lateral jet interaction[J]. Acta Aerodynamica Sinica, 2006, 24(1):28-33(in Chinese).
[64] 李新国, 方群. 有翼导弹飞行动力学[M]. 西安:西北工业大学出版社, 2005. LI X G, FANG Q. Winged missile flight dynamics[M]. Xi'an:Northwestern Polytechnical University Press, 2005(in Chinese).
[65] 卢京潮. 自动控制原理[M]. 2版. 西安:西北工业大学出版社, 2009. LU J C. Principles of automatic control[M]. 2nd ed. Xi'an:Northwestern Polytechnical University Press, 2009(in Chinese).
[66] COCHRAN J E Jr, CHRISTENSEN D E. Free-flight rocket attitude motion due to transverse vibration[J]. Journal of Spacecraft and Rockets, 1980, 17(5):425-431.
[67] GASBARRI P, MONTI R, DE ANGELIS C, et al. Effects of uncertainties and flexible dynamic contributions on the control of a spacecraft full-coupled model[J]. Acta Astronautica, 2014, 94(1):515-526.
[68] 何斌, 芮筱亭, 陆毓琪. 柔性弹箭飞行力学建模研究[J]. 弹道学报, 2006, 18(1):22-24, 29. HE B, RUI X T, LU Y Q. A study on flight dynamic modeling of flexible shell/rocket[J]. Journal of Ballistics, 2006, 18(1):22-24, 29(in Chinese).
[69] ABBAS L K, CHEN D Y, RUI X T. Numerical calculation of effect of elastic deformation on aerodynamic characteristics of a rocket[J]. International Journal of Aerospace Engineering, 2014(3-4):1-11.
[70] 杨超, 黄超, 吴志刚, 等. 气动伺服弹性研究的进展与挑战[J]. 航空学报, 2015, 36(4):1011-1033. YANG C, HUANG C, WU Z G, et al. Progress and challenges for aeroservoelasticity research[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1011-1033(in Chinese).
[71] LIVNE E. The future of airplane aeroelasticity[J]. Journal of Aircraft, 2003, 40(6):1066-1092.
[72] KARPEL M. Procedures and models for aeroservoelastic analysis and design[J]. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik, 2001, 81(9):579-592.
[73] OLIVEIRA E J, GASBARRI P, MILAGRE DA FONSECA I. Flight dynamics numerical computation of a sounding rocket including elastic deformation model[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2015.
[74] HUA R H, ZHAO C X, YE Z Y, et al. Effect of elastic deformation on the trajectory of aerial separation[J]. Aerospace Science and Technology, 2015, 45:128-139.
[75] HUA R H, YUAN X X, TANG Z G, et al. Study on flight dynamics of flexible projectiles based on closed-loop feedback control[J]. Aerospace Science and Technology, 2019, 90:327-341.
[76] 刘伟,刘君,柳军, 等. 平衡气体效应对飞行器动态特性的影响研究[J]. 飞行力学,2004,22(4):65-68. LIU W, LIU J, LIU J, et al. Investigation of equilibrium gas effect on dynamic characteristic of aerocraft[J]. Flight Dynamics, 2004,22(4):65-68(in Chinese).
[77] OKTAY E, AKAY H. CFD predictions of dynamic derivatives for missiles[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reston:AIAA, 2002.
[78] 赵文文, 陈伟芳, 邵纯, 等. 考虑多种物理效应的钝锥俯仰稳定性参数影响分析[J]. 空气动力学学报, 2013, 31(4):442-448. ZHAO W W, CHEN W F, SHAO C, et al. The research on the influence of hypersonic blunt cone pitching dynamic derivatives considering different physical effects[J]. Acta Aerodynamica Sinica, 2013, 31(4):442-448(in Chinese).
[79] MACLEAN E M, MUNDY T. Analysis and ground test of aerothermal effects on spherical capsule geometries[C]//38th Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2008.
Outlines

/