[1] 陈坚强. 国家数值风洞工程(NNW)关键技术研究进展[J/OL]. (2021-04-28)[2021-05-05]. 中国科学:技术科学, https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese National Numerical Wind Tunnel Project[J/OL]. (2021-04-28)[2021-05-05]. Scientia Sinica Technologica, https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html (in Chinese).
[2] ZHANG H X, ZHANG L P, ZHANG S H, et al. Some recent progress of high-order methods on structured and unstructured grids in CARDC[J]. Computers & Fluids, 2017, 154:371-389.
[3] LI C, CHEN J Q, YUAN X X, et al. Improved weighted NND scheme for shock-capturing[J]. Journal of Physics:Conference Series, 2021, 1786:012043.
[4] GUO Q L, SUN D, LI C, et al. A new discontinuity indicator for hybrid WENO schemes[J]. Journal of Scientific Computing, 2020, 83(2):1-33.
[5] LI C, SUN D, GUO Q L, et al. A new hybrid WENO scheme on a four-point stencil for Euler equations[J]. Journal of Scientific Computing, 2021, 87(1):1-37.
[6] ADLER M C, GONZALEZ D R, STACK C M, et al. Synthetic generation of equilibrium boundary layer turbulence from modeled statistics[J]. Computers & Fluids, 2018, 165:127-143.
[7] XU S, MARTIN M P. Assessment of inflow boundary conditions for compressible turbulent boundary layers[J]. Physics of Fluids, 2004, 16(7):2623-2639.
[8] BOOKEY P, WYCKHAM C, SMITS A. Experimental investigations of Mach 3 shock-wave turbulent boundary layer interactions[C]//35th AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2005.
[9] DUAN L, BEEKMAN I, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number[J]. Journal of Fluid Mechanics, 2011, 672:245-267.
[10] SUN D, GUO Q L, LI C, et al. Direct numerical simulation of effects of a micro-ramp on a hypersonic shock wave/boundary layer interaction[J]. Physics of Fluids, 2019, 31(12):126101.
[11] SUN D, GUO Q L, LI C, et al. Direct numerical simulation of effects of a micro-ramp on a hypersonic shock wave/boundary layer interaction[J]. Physics of Fluids, 2019, 31(12):126101.
[12] 袁先旭, 邓小兵, 谢昱飞, 等. 超声速湍流流场的RANS/LES混合计算方法研究[J]. 空气动力学学报, 2009, 27(6):723-728. YUAN X X, DENG X B, XIE Y F, et al. Research on the RANS/LES hybrid method for supersonic/hypersonic turbulence flow[J]. Acta Aerodynamica Sinica, 2009, 27(6):723-728(in Chinese).
[13] 孙东. 双三角翼背风区大范围分离与旋涡运动的DES模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2012. SUN D. The investigation of the massively separated flow and vortical flow on the leeward side of double-delta wing by using detached-eddy simulation[D]. Mianyang:China Aerodynamics Research and Development Center, 2012(in Chinese).
[14] MIKHAIL L S, PHILIPPE R S, MIKHAIL K S, et al. A hybird RANS-LES approach with delayed-DES and wall-modeled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29:1638-1649.
[15] FUJIIK K S. Computational study of a supersonic base flow using LES/RANS hybrid methodology[J]. AIAA Journal, 2005, 43(6):1265-1275.
[16] FRÖHLICH J, VON TERZI D. Hybrid LES/RANS methods for the simulation of turbulent flows[J]. Progress in Aerospace Sciences, 2008, 44(5):349-377.
[17] WU X H. Inflow turbulence generation methods[J]. Annual Review of Fluid Mechanics, 2017, 49(1):23-49.
[18] 郭启龙, 李辰, 刘朋欣, 等. 合成湍流对空腔流动RANS-LES混合模拟结果的影响[J]. 空气动力学学报, 2020, 38(5):980-988. GUO Q L, LI C, LIU P X, et al. Effect of synthetic turbulence on hybrid RANS-LES simulation of cavity flow[J]. Acta Aerodynamica Sinica, 2020, 38(5):980-988(in Chinese).
[19] 邓小兵. 不可压缩湍流大涡模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2007. DENG X B. Large Eddy simulation of incompressible turbulent flow[D]. Mianyang:China Aerodynamics Research and Development Center, 2007(in Chinese).
[20] KRAVCHENKO A G, MOIN P. Numerical studies of flow over a circular cylinder at ReD=3900[J]. Physics of Fluids, 2000, 12(2):403-417.
[21] 毛枚良, 闵耀兵, 王新光, 等. 可压缩湍流边界层壁面函数方法综述[J]. 空气动力学学报, 2021, 39(2):1-11. MAO M L, MIN Y B, WANG X G, et al. Overview of wall functions for compressible turbulent boundary layers[J]. Acta Aerodynamica Sinica, 2021, 39(2):1-11(in Chinese).
[22] TENNEKES H, LUMLEY J L. A first course in turbulence[M]. Cambridge:The MIT Press, 1972.
[23] NICHOLS R H, NELSON C C. Wall function boundary conditions including heat transfer and compressibility[J]. AIAA Journal, 2004, 42(6):1107-1114.
[24] DURBIN P A, BELCHER S E. Scaling of adverse-pressure-gradient turbulent boundary layers[J]. Journal of Fluid Mechanics, 1992, 238:699-722.
[25] CRAFT T J, GERASIMOV A V, IACOVIDES H, et al. Progress in the generalization of wall-function treatments[J]. International Journal of Heat and Fluid Flow, 2002, 23(2):148-160.
[26] WANG X G. Advanced RANS and near-wall turbulence modelling for high-speed flow[D]. Mancheste:University of Manchester, 2019.
[27] REDA D C, MURPHY J D. Shock wave/turbulent boundary-layer interactions in rectangular channels[J]. AIAA Journal, 1973, 11(2):139-140.
[28] SCHVLEIN E. Optical skin friction measurements in short-duration facilities (invited)[C]//24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston:AIAA, 2004.
[29] KUSSOY M I, HORSTMAN K C. Documentation of two-and three-dimensional shock-wave/turbulent-boundary-layer interaction flows at Mach 8.2[R]. Washington,D.C.:NASA, 1991.
[30] ROY C, BLOTTNER F. Review and assessment of turbulence models for hypersonic flows:2D/asymmetric cases[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2006.
[31] HADER C, FASEL H F. Three-dimensional wave packet in a Mach 6 boundary layer on a flared cone[J]. Journal of Fluid Mechanics, 2020, 885:R3.
[32] SIVASUBRAMANIAN J, FASEL H F. Numerical investigation of the development of three-dimensional wavepackets in a sharp cone boundary layer at Mach 6[J]. Journal of Fluid Mechanics, 2014, 756:600-649.
[33] HADER C, FASEL H F. Towards simulating natural transition in hypersonic boundary layers via random inflow disturbances[J]. Journal of Fluid Mechanics, 2018, 847:R3.
[34] SIVASUBRAMANIAN J, FASEL H F. Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6:fundamental breakdown[J]. Journal of Fluid Mechanics, 2015, 768:175-218.
[35] HADER C, LEINEMANN M, FASEL H F. Direct numerical simulations of hypersonic boundary-layer transition for a slender cone[C]//AIAA Aviation 2020 Forum. Reston:AIAA, 2020.
[36] DONG S W, CHEN J Q, YUAN X X, et al. Wall pressure beneath a transitional hypersonic boundary layer over an inclined straight circular cone[J]. Advances in Aerodynamics, 2020, 2:29.
[37] 国义军, 石卫波, 曾磊. 高超声速飞行器烧蚀防热理论与应用[M]. 北京:科学出版社, 2019:1-8. GUO Y J, SHI W B, ZENG L. Mechanism of ablative thermal protection applied to hypersonic vehicles[M]. Beijing:Science Press, 2019:1-8(in Chinese).
[38] 王希季. 航天器进入与返回技术[M]. 北京:中国宇航出版社, 2009:80-81. WANGX J. Spacecraft entry and return technology[M]. Beijing:China Aerospace Publishing House, 2009:80-81(in Chinese).
[39] 唐贵明. 狭窄缝隙内的热流分布实验研究[J]. 流体力学实验与测量, 2000, 14(4):1-6. TANG G M. Experimental investigation of heat transfer distributions in a deep gap[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(4):1-6(in Chinese).
[40] WEINSTEIN I, AVERY D E, CHAPMAN A J. Aerodynamic heating to the gaps and surfaces of simulated reusable-surface-insulation tile arrays in turbulent flow at Mach 6.6[R]. Washington,D.C.:NASA, 1975.
[41] VAN LEER B. Towards the ultimate conservative difference scheme. V.A second-order sequel to Godunov's method[J]. Journal of Computational Physics, 1979, 32(1):101-136.
[42] HAENEL D, SCHWANE R, SEIDER G. On the accuracy of upwind schemes for the solution of the Navier-Stokes equations[C]//8th Computational Fluid Dynamics Conference. Reston:AIAA, 1987.
[43] 李艳丽, 李素循. 高超声速绕钝舵层流干扰流场特性研究[J]. 宇航学报, 2007, 28(6):1472-1477. LI Y L, LI S X. Investigation of interactive hypersonic laminar flow over blunt fin[J]. Journal of Astronautics, 2007, 28(6):1472-1477(in Chinese).
[44] 罗金玲, 李超, 徐锦. 高超声速飞行器机体/推进一体化设计的启示[J]. 航空学报, 2015, 36(1):39-48. LUO J L, LI C, XU J. Inspiration of hypersonic vehicle with airframe/propulsion integrateddesign[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):39-48(in Chinese).
[45] LI N, CHANG J T, XU K J, et al. Oscillation of the shock train in an isolator with incident shocks[J]. Physics of Fluids, 2018, 30(11):116102.
[46] TAN H J, SUN S, HUANG H X. Behavior of shock trains in a hypersonic inlet/isolator model with complex background waves[J]. Experiments in Fluids, 2012, 53(6):1647-1661.
[47] SU W Y, JI Y X, CHEN Y. Effects of dynamic backpressure on pseudoshock oscillations in scramjet inlet-isolator[J]. Journal of Propulsion and Power, 2016, 32(2):516-528.
[48] WAGNER J L, YUCEIL K B, VALDIVIA A, et al. Experimental investigation of unstart in an inlet/isolator model in Mach 5 flow[J]. AIAA Journal, 2009, 47(6):1528-1542.
[49] IM S K, DO H. Unstart phenomena induced by flow choking in scramjet inlet-isolators[J]. Progress in Aerospace Sciences, 2018, 97:1-21.
[50] 谭慧俊, 卜焕先, 张启帆, 等. 高超声速进气道不起动问题的研究进展[J]. 南京航空航天大学学报, 2014, 46(4):501-508. TAN H J, BU H X, ZHANG Q F, et al. Review of hypersonic inlet unstart phenomenon[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(4):501-508(in Chinese).
[51] CAO R F, CHANG J T, TANG J F, et al. Switching control of thrust regulation and inlet unstart protection for scramjet engine based on Min strategy[J]. Aerospace Science and Technology, 2015, 40:96-103.
[52] SHEIKIN E, KURANOV A. Scramjet with MHD controlled inlet[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston:AIAA, 2005.
[53] 李素循. 近空间飞行器的气动复合控制原理及研究进展[J]. 力学进展, 2009, 39(6):740-755. LI S X. Progress in aerodynamics of combination control for vehicles at high speed[J]. Advances in Mechanics, 2009, 39(6):740-755(in Chinese).
[54] 唐志共, 杨彦广, 刘君, 等. 横向喷流干扰/控制研究进展[J]. 实验流体力学, 2010, 24(4):1-6. TANG Z G, YANG Y G, LIU J, et al. The investigation and expectation on lateral jet interaction/control[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(4):1-6(in Chinese).
[55] 许晨豪, 蒋崇文, 高振勋, 等. 高超声速飞行器反作用控制系统喷流干扰综述[J]. 力学与实践, 2014, 36(2):147-155, 160. XU C H, JIANG C W, GAO Z X, et al. The jet interaction effects of reaction control systems in hypersonic vehicles[J]. Mechanics in Engineering, 2014, 36(2):147-155, 160(in Chinese).
[56] 魏明英. 直接侧向力与气动力复合控制技术综述[J]. 现代防御技术, 2012, 40(1):52-54, 76. WEI M Y. Summary of blended control technology for missiles with lateral jets and aerodynamicsurfaces[J]. Modern Defence Technology, 2012, 40(1):52-54, 76(in Chinese).
[57] 贾倩, 魏明英, 郭大勇. 高空轨控式直接侧向力/气动力复合控制方法[J]. 现代防御技术, 2015, 43(6):61-67. JIA Q, WEI M Y, GUO D Y. Orbital lateral thrust/aerodynamic force blended controlmethodin high altitude[J]. Modern Defence Technology, 2015, 43(6):61-67(in Chinese).
[58] CASSEL L A. Applying jet interaction technology[J]. Journal of Spacecraft and Rockets, 2003, 40(4):523-537.
[59] DICKMANN D A, LU F K. Shock/boundary-layer interaction effects on transverse jets in crossflow over a flat plate[J]. Journal of Spacecraft and Rockets, 2009, 46(6):1132-1141.
[60] KUMAR D, STOLLERY J, SMITH A. Hypersonic jet control effectiveness[C]//International Aerospace Planes and Hypersonics Technologies. Reston:AIAA, 1995.
[61] 陈坚强, 张毅锋, 江定武, 等. 侧向多喷口干扰复杂流动数值模拟研究[J]. 力学学报, 2008, 40(6):735-743. CHEN J Q, ZHANG Y F, JIANG D W, et al. Numerical simulation of complex flow withmulti lateral jets interactions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6):735-743(in Chinese).
[62] 刘耀峰, 薄靖龙. 侧向喷流干扰流场建立与消退过程数值模拟[J]. 宇航学报, 2015, 36(8):877-884. LIU Y F, BO J L. Numerical simulation of establishment/vanishment process of lateral jet interaction flowfield[J]. Journal of Astronautics, 2015, 36(8):877-884(in Chinese).
[63] 杨彦广, 刘君, 唐志共. 横向喷流干扰中的真实气体效应研究[J]. 空气动力学学报, 2006, 24(1):28-33. YANG Y G, LIU J, TANG Z G. A study of real gas effects on lateral jet interaction[J]. Acta Aerodynamica Sinica, 2006, 24(1):28-33(in Chinese).
[64] 李新国, 方群. 有翼导弹飞行动力学[M]. 西安:西北工业大学出版社, 2005. LI X G, FANG Q. Winged missile flight dynamics[M]. Xi'an:Northwestern Polytechnical University Press, 2005(in Chinese).
[65] 卢京潮. 自动控制原理[M]. 2版. 西安:西北工业大学出版社, 2009. LU J C. Principles of automatic control[M]. 2nd ed. Xi'an:Northwestern Polytechnical University Press, 2009(in Chinese).
[66] COCHRAN J E Jr, CHRISTENSEN D E. Free-flight rocket attitude motion due to transverse vibration[J]. Journal of Spacecraft and Rockets, 1980, 17(5):425-431.
[67] GASBARRI P, MONTI R, DE ANGELIS C, et al. Effects of uncertainties and flexible dynamic contributions on the control of a spacecraft full-coupled model[J]. Acta Astronautica, 2014, 94(1):515-526.
[68] 何斌, 芮筱亭, 陆毓琪. 柔性弹箭飞行力学建模研究[J]. 弹道学报, 2006, 18(1):22-24, 29. HE B, RUI X T, LU Y Q. A study on flight dynamic modeling of flexible shell/rocket[J]. Journal of Ballistics, 2006, 18(1):22-24, 29(in Chinese).
[69] ABBAS L K, CHEN D Y, RUI X T. Numerical calculation of effect of elastic deformation on aerodynamic characteristics of a rocket[J]. International Journal of Aerospace Engineering, 2014(3-4):1-11.
[70] 杨超, 黄超, 吴志刚, 等. 气动伺服弹性研究的进展与挑战[J]. 航空学报, 2015, 36(4):1011-1033. YANG C, HUANG C, WU Z G, et al. Progress and challenges for aeroservoelasticity research[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1011-1033(in Chinese).
[71] LIVNE E. The future of airplane aeroelasticity[J]. Journal of Aircraft, 2003, 40(6):1066-1092.
[72] KARPEL M. Procedures and models for aeroservoelastic analysis and design[J]. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik, 2001, 81(9):579-592.
[73] OLIVEIRA E J, GASBARRI P, MILAGRE DA FONSECA I. Flight dynamics numerical computation of a sounding rocket including elastic deformation model[C]//AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 2015.
[74] HUA R H, ZHAO C X, YE Z Y, et al. Effect of elastic deformation on the trajectory of aerial separation[J]. Aerospace Science and Technology, 2015, 45:128-139.
[75] HUA R H, YUAN X X, TANG Z G, et al. Study on flight dynamics of flexible projectiles based on closed-loop feedback control[J]. Aerospace Science and Technology, 2019, 90:327-341.
[76] 刘伟,刘君,柳军, 等. 平衡气体效应对飞行器动态特性的影响研究[J]. 飞行力学,2004,22(4):65-68. LIU W, LIU J, LIU J, et al. Investigation of equilibrium gas effect on dynamic characteristic of aerocraft[J]. Flight Dynamics, 2004,22(4):65-68(in Chinese).
[77] OKTAY E, AKAY H. CFD predictions of dynamic derivatives for missiles[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reston:AIAA, 2002.
[78] 赵文文, 陈伟芳, 邵纯, 等. 考虑多种物理效应的钝锥俯仰稳定性参数影响分析[J]. 空气动力学学报, 2013, 31(4):442-448. ZHAO W W, CHEN W F, SHAO C, et al. The research on the influence of hypersonic blunt cone pitching dynamic derivatives considering different physical effects[J]. Acta Aerodynamica Sinica, 2013, 31(4):442-448(in Chinese).
[79] MACLEAN E M, MUNDY T. Analysis and ground test of aerothermal effects on spherical capsule geometries[C]//38th Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2008.