Special Topic of NNW Progress and Application

FlowStar: General unstructured-grid CFD software for National Numerical Windtunnel (NNW) Project

  • CHEN Jianqiang ,
  • WU Xiaojun ,
  • ZHANG Jian ,
  • LI Bin ,
  • JIA Hongyin ,
  • ZHOU Naichun
Expand
  • Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2021-03-30

  Revised date: 2021-04-29

  Online published: 2021-06-08

Supported by

National Numerical Windtunnel Project

Abstract

Computational Fluid Dynamics (CFD) simulation software is the digital expression of fluid-related mathematical physical knowledge and engineering practice experience, significantly boosting the digital transformation of industry. However, the development of large-scale industrial CFD software is extremely difficult, requiring consideration of factors such as the characteristics of diverse functions, stable systems, superior performance, and friendly interaction. Relying on the National Numerical Windtunnel (NNW) project, we develop a general flow field simulation software, NNW-FlowStar, which has been applied in aviation, aerospace and other industries. The software is developed based on the unstructured finite volume method and large-scale parallel computing technology, combining modern software engineering thinking. With advanced numerical methods, good calculation efficiency and user-friendly interface, it can conduct aerodynamic numerical simulations of various complex shapes. The unique overlapping mesh technology combined with the six-degree-of-freedom motion module can help satisfy various coupled aerodynamic and rigid body motion numerical simulation requirements such as weapon separation and fixed axis rotation of the cabin. A variety of standard model cases and complex engineering applications show that FlowStar is a general CFD simulation software with high precision, high efficiency and high reliability. Through the introduction of the software architecture design and functional application, relevant users can better understand FlowStar, and finally promote the benign ecology of domestic independent CFD software development.

Cite this article

CHEN Jianqiang , WU Xiaojun , ZHANG Jian , LI Bin , JIA Hongyin , ZHOU Naichun . FlowStar: General unstructured-grid CFD software for National Numerical Windtunnel (NNW) Project[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(9) : 625739 -625739 . DOI: 10.7527/S1000-6893.2021.25739

References

[1] 周铸, 黄江涛, 黄勇, 等. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报, 2017, 38(3):020891. ZHOU Z, HUANG J T, HUANG Y, et al. CFD technology in aeronautic engineering field:Applications, challenges and development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):020891(in Chinese).
[2] 张枫. 基于FLUENT软件包的制导炮弹气动力参数计算技术研究[D]. 南京:南京理工大学, 2010. ZHANG F. Research on calculation technology of aerodynamic parameters of guided projectile based on FLUENT software package[D]. Nanjing:Nanjing University of Science and Technology, 2010.
[3] 梁海顺, 杨昆, 王贯超, 等. 基于NUMECA技术的喷气织机主喷嘴内部流场数值模拟[J]. 纺织器材, 2008, 35(3):12-16. LIANG H S, YANG K, WANG G C, et al. NUMECA-based numerical value analog of flow field inside of the main nozzles of air-jet looms[J]. Textile Accessories, 2008, 35(3):12-16(in Chinese).
[4] 季路成, 钟文涛, 徐建中. 复杂物理域流场数值模拟软件-CASFLOW的开发[J]. 工程热物理学报, 2000, 21(6):700-702. JI L C, ZHONG W T, XU J Z. Development of CASFLOW for flow simulations with complex physical zone[J]. Journal of Engineering Thermophysics, 2000, 21(6):700-702(in Chinese).
[5] 李广宁, 李凤蔚, 周志宏. 运输类飞机气动力分析软件ATTF的开发与验证[J]. 西北工业大学学报, 2011, 29(1):148-152. LI G N, LI F W, ZHOU Z H. Validation of a new developed aerodynamics analysis toolkit for civil aircraft configurations[J]. Journal of Northwestern Polytechnical University, 2011, 29(1):148-152(in Chinese).
[6] 李斌. 战术导弹CFD软件求解器开发与应用[J]. 战术导弹技术, 2009(2):32-35, 92. LI B. Development and application of CFD solver for tactical missile[J]. Tactical Missile Technology, 2009(2):32-35, 92(in Chinese).
[7] 李新亮, 傅德薰, 马延文, 等. 高精度计算流体力学软件Hoam-OpenCFD开发[J]. 科研信息化技术与应用, 2010, 1(1):53-59. LI X L, FU D X, MA Y W, et al. Development of high accuracy CFD software Hoam-OpenCFD[J]. E-Science technology & Application, 2010, 1(1):53-59(in Chinese).
[8] 赵钟, 何磊, 何先耀. 风雷(PHengLEI)通用CFD软件设计[J]. 计算机工程与科学, 2020, 42(2):210-219. ZHAO Z, HE L, HE X Y. Design of general CFD software PHengLEI[J]. Computer Engineering & Science, 2020, 42(2):210-219(in Chinese).
[9] 陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J/OL]. 中国科学:技术科学, (2021-04-28)[2021-05-01]. https://kns.cnki.net/kcms/detail/11.5844.TH.202104-28.0914.006.html CHEN J Q. Advances in the key technologies of Chinese national numerical wind tunnel project[J/OL]. Scientia Sinica (Technologica), (2021-04-28)[2021-05-01]. https://kns.cnki.net/kcms/detail/11.5844.TH.20210428.09-14.006.html (in Chinese).
[10] CHEN J T, ZHANG Y B, ZHOU N C, et al. Numerical investigations of the high-lift configuration with MFlow solver[J]. Journal of Aircraft, 2015, 52(4):1051-1062.
[11] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372.
[12] VENKATAKRISHNAN V. On the accuracy of limiters and convergence to steady state solutions[C]//31st Aerospace Sciences Meeting. Reston:AIAA, 1993:880.
[13] 马明生, 龚小权, 邓有奇, 等. 一种适用于非结构网格的间断Galerkin有限元LU-SGS隐式方法[J]. 西北工业大学学报, 2016, 34(5):754-760. MA M S, GONG X Q, DENG Y Q, et al. An implicit LU-SGS scheme for the discontinuous Galerkin method on unstructured grids[J]. Journal of Northwestern Polytechnical University, 2016, 34(5):754-760(in Chinese).
[14] OTERO E, ELIASSON P. Acceleration on stretched meshes with line-implicit LU-SGS in parallel implementation[J]. International Journal of Computational Fluid Dynamics, 2015, 29(2):133-149.
[15] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]//30th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1992.
[16] MENTER F, RUMSEY C. Assessment of two-equation turbulence models for transonic flows[C]//Fluid Dynamics Conference. Reston:AIAA, 1994.
[17] MANI M, BABCOCK D, WINKLER C, et al. Predictions of a supersonic turbulent flow in a square duct[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2013.
[18] DACLES-MARIANI J, KWAK D, ZILLIAC G. On numerical errors and turbulence modeling in tip vortex flow prediction[J]. International Journal for Numerical Methods in Fluids, 1999, 30(1):65-82.
[19] MENTER F. Improved two-equation k-ω turbulence models for aerodynamic flows:NASA STI 93[R]. Moffett:NASA STI, 1992.
[20] 马明生, 邓有奇, 郑鸣, 等. 超声速侧向多喷流干扰特性数值模拟[J]. 空气动力学学报, 2007, 25(4):468-473. MA M S, DENG Y Q, ZHENG M, et al. Numerical investigation of supersonic jet interactions for tactical bodies[J]. Acta Aerodynamica Sinica, 2007, 25(4):468-473(in Chinese).
[21] 张耀冰. 运输机气动特性混合网格数值模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2010. ZHANG Y B. Numerical simulation of aerodynamic characteristics of transport aircraft with hybrid grid[D]. Mianyang:China Aerodynamics Research and Development Center, 2010(in Chinese).
[22] 张培红, 张耀冰, 周桂宇, 等. 面向混合网格高精度阻力预测的熵修正方法[J]. 航空学报, 2018, 39(9):122030. ZHANG P H, ZHANG Y B, ZHOU G Y, et al. Entropy correction method for high accuracy drag prediction with mixed grids[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):122030(in Chinese).
[23] 唐静, 崔鹏程, 贾洪印, 等. 非结构混合网格鲁棒自适应技术[J]. 航空学报, 2019, 40(10):122894. TANG J, CUI P C, JIA H Y, et al. Robust adaptation techniques for unstructured hybrid mesh[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):122894(in Chinese).
[24] 唐静, 郑鸣, 邓有奇, 等. 网格自适应技术在复杂外形流场模拟中的应用[J]. 计算力学学报, 2015, 32(6):752-757. TANG J, ZHENG M, DENG Y Q, et al. Grid adaptation for flow simulation of complicated configuration[J]. Chinese Journal of Computational Mechanics, 2015, 32(6):752-757(in Chinese).
[25] 崔鹏程, 邓有奇, 唐静, 等. 基于伴随方程的网格自适应及误差修正[J]. 航空学报, 2016, 37(10):2992-3002. CUI P C, DENG Y Q, TANG J, et al. Adjoint equations-based grid adaptation and error correction[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):2992-3002(in Chinese).
[26] 唐静, 张健, 李彬, 等. 非结构混合网格自适应并行技术[J]. 航空学报, 2020, 41(1):123202. TANG J, ZHANG J, LI B, et al. Parallel algorithms for unstructured hybrid mesh adaptation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):123202(in Chinese).
[27] 张培红, 张耀冰, 周桂宇, 等. 面向非结构混合网格高精度阻力预测的梯度求解方法[J]. 航空学报, 2018, 39(1):121415. ZHANG P H, ZHANG Y B, ZHOU G Y, et al. Gradient calculation method of unstructured mixed grids for improving drag prediction accuracy[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):121415(in Chinese).
[28] 张培红, 王明, 邓有奇, 等. 武器分离及舱门开启过程数值模拟研究[J]. 空气动力学学报, 2013, 31(3):277-281, 293. ZHANG P H, WANG M, DENG Y Q, et al. Numerical simulation of store separation and door operation[J]. Acta Aerodynamica Sinica, 2013, 31(3):277-281, 293(in Chinese).
[29] LI B, TANG J, ZHOU N C. Numerical simulation of missile launching with rudder deflection[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2013, 30(2):107-115.
[30] CUI P C, LI B, TANG J, et al. Investigation of store separation characteristics by leading edge spoilers before supersonic cavity[J]. Journal of Physics:Conference Series, 2020, 1600:012017.
[31] 崔鹏程, 唐静, 李彬, 等. 基于超网格的重叠网格守恒插值方法[J]. 航空学报, 2018, 39(3):121569. CUI P C, TANG J, LI B, et al. A conservative interpolation method for overset mesh via super mesh[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):121569(in Chinese).
[32] BONET J, PERAIRE J. An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems[J]. International Journal for Numerical Methods in Engineering, 1991, 31(1):1-17.
[33] KARYPIS G, KUMAR V. A fast and high quality multilevel scheme for partitioning irregular graphs[J]. SIAM Journal of Scientific Computing, 1998, 20(1):359-392.
[34] 唐静, 李彬, 周乃春, 等. 基于非结构网格流场超大规模并行计算[J]. 空气动力学学报, 2019, 37(1):61-67. TANG J, LI B, ZHOU N C, et al. Large scale parallel computing for fluid dynamics on unstructured grid[J]. Acta Aerodynamica Sinica, 2019, 37(1):61-67(in Chinese).
[35] HIROSE N, ASAI K, IKAWA K. Transonic 3-D Euler analysis of flows around fan-jet engine and T. P. S. (Turbine Powered Simulator):1045[R].[S. l.]:National Aerospace Laboratory, 1989.
[36] GUO J H, LIN G P, BU X Q, et al. Sensitivity analysis of flowfield modeling parameters upon the flow structure and aerodynamics of an opposing jet over a hypersonic blunt body[J]. Chinese Journal of Aeronautics, 2020, 33(1):161-175.
[37] 龚小权, 马明生, 张健, 等. 基于非结构重叠网格的螺旋桨滑流非定常数值模拟[J]. 航空动力学报, 2018, 33(2):345-354. GONG X Q, MA M S, ZHANG J, et al. Unsteady numerical simulation of propeller slipstream based on unstructured chimera grid[J]. Journal of Aerospace Power, 2018, 33(2):345-354(in Chinese).
[38] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from The Fifth Computational Fluid Dynamics Drag Prediction Workshop[J]. Journal of Aircraft, 2014, 51(4):1194-1213.
[39] RUMSEY C L, SLOTNICK J P. Overview and summary of The Second AIAA High-Lift Prediction Workshop[J]. Journal of Aircraft, 2014, 52(4):1006-1025.
[40] 张耀冰, 邓有奇, 吴晓军, 等. DLR-F6翼身组合体数值计算[J]. 空气动力学学报, 2011, 29(2):163-169. ZHANG Y B, DENG Y Q, WU X J, et al. Drag prediction of DLR-F6 using MFlow unstructured mesh solver[J]. Acta Aerodynamica Sinica, 2011, 29(2):163-169(in Chinese).
[41] HEIM E R. CFD Wing/Pylon/Finned Store mutual interference wind tunnel experiment:ADB152669[R]. Tullahoma:Arnold Engineering Development Center, 1991.
[42] VASSBERG J,TINOCO E,MANI M R,et al.Summary of the third AIAA CFD drag prediction workshop[C]//45th AIAA Aerospace Sciences Meeting and Exhibit.Reston:AIAA,2007.
[43] Holst T L.Computational fluid dynamics drag prediction-Results from the Viscous Transonic Airfoil Workshop:NASA TM100095[R].Washington,D.C.:NASA,1998.
[44] HEIM E R. CFD wing/pylon/finned store mutual interference wind tunnel experiment[EB/OL]. (1991-01-01)[2021-05-01]. https://www.zhangqiaokeyan.com/ntis-science-report_other_thesis/020711225375.html.
Outlines

/