When hydraulic actuating cylinders of aeroengine guide vane control mechanisms fail under the conditions of high speed, high temperature and variable loads, the working states of hydraulic actuating cylinders will be limited and the actual physical parameters of the system will change abruptly, which further aggravates parametric uncertainties and unmodeled disturbances and deteriorates position tracking accuracy and even makes the system unstable. To improve the control performance and fault-tolerance ability of hydraulic actuating cylinders, this paper proposes an integral robust adaptive active fault-tolerant control strategy for motion tracking control of aeroengine hydraulic actuating cylinders under fault conditions. To reduce parametric uncertainties, a composite parameter adaptive law is developed based on both parameter estimation errors and the tracking error, which can not only achieve fast convergence rates of parameters, but also improve the active fault tolerance of the system. To eliminate the remaining parametric uncertainties and external disturbances, an integral robust adaptive active fault-tolerant control method is presented, which further enhances the fault-tolerant ability and tracking accuracy of the hydraulic actuating cylinder. On basis of the Lyapunov theory, it is demonstrated that the active fault-tolerant control strategy can realize asymptotic convergence of the tracking error under external disturbances. The simulation results show that the proposed active fault-tolerant control strategy has better parameter adaptive ability and anti-disturbance ability than existing fault-tolerant control methods, and the estimated parameters can converge quickly within 7 s.
YANG Xiaowei
,
GE Yaowen
,
DENG Wenxiang
,
YAO Jianyong
,
ZHOU Ning
. Active fault-tolerant control for hydraulic actuating cylinders of aeroengine guide vane control mechanisms[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022
, 43(9)
: 625464
-625464
.
DOI: 10.7527/S1000-6893.2021.25464
[1] WANG C X. Hydraulic control system[M]. Beijing: Machinery Industry Press, 2008: 40-52(in Chinese). 王春行. 液压控制系统[M]. 北京: 机械工业出版社, 2008: 40-52.
[2] QIU G Q. Hydraulic technology and application[M]. Beijing: Post & Telecom Press, 2008: 23-42(in Chinese). 邱国庆. 液压技术与应用[M]. 北京: 人民邮电出版社, 2008: 23-42.
[3] WU Z S. Hydraulic control system[M]. Beijing: Higher Education Press, 2008: 40-56(in Chinese). 吴振顺. 液压控制系统[M]. 北京: 高等教育出版社, 2008: 40-56.
[4] YAO B, TOMIZUKA M. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form[J]. Automatica, 1997, 33(5): 893-900.
[5] YAO B, BU F, REEDY J, et al. Adaptive robust motion control of single-rod hydraulic actuators: Theory and experiments[J]. IEEE/ASME Transactions on Mechatronics, 2002, 5(1): 79-91.
[6] YAO J Y, JIAO Z X, MA D W. A practical nonlinear adaptive control of hydraulic servomechanisms with periodic-like disturbances[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(6): 2752-2760.
[7] YAO J Y, DENG W X. Active disturbance rejection adaptive control of uncertain nonlinear systems: theory and application[J]. Nonlinear Dynamics, 2017, 89(3): 1611-1624.
[8] YAO J Y, DENG W X. Activedisturbance rejection adaptive control of hydraulic servo systems[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8023-8032.
[9] WANG J. Technical analysis and improvement of military engine control system[J]. National Defense Science and Technology, 2014, 35(3): 36-39(in Chinese). 王兢. 军用发动机控制系统技术分析及改进研究[J]. 国防科技, 2014, 35(3): 36-39.
[10] WANG B, YE Z F. Aeroengine hydraulic control system[M]. Beijing: Science Press, 2019: 160-161(in Chinese). 王彬, 叶志锋. 航空发动机液压控制系统[M]. 北京: 科学出版社, 2019: 160-161.
[11] CHEN X F, WANG S B, CHNEG L. Research on matching synchronous compression transform of aeroengine fast changing signals[J]. Journal of Mechanical Engineering, 2019, 55(13): 13-22(in Chinese). 陈雪峰, 王诗彬, 程礼. 航空发动机快变信号的匹配同步压缩变换研究[J]. 机械工程学报, 2019, 55(13): 13-22.
[12] HE J F, CHEN X, LU P Y, et al. Theoretical analysis and experimental study on two-dimensional cartridge servo valve[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 422590(in Chinese). 何晋飞, 陈烜, 鲁鹏勇, 等. 插装式二维(2D)伺服阀的理论分析与实验研究[J]. 航空学报, 2019, 40(5): 422590.
[13] NA J, YANG J, WU X, et al. Robust adaptive parameter estimation of sinusoidal signals[J]. Automatica, 2015, 53: 376-384.
[14] XIAN B, QUEIROZ M S D, DAWSON D M, et al. A discontinuous output feedback controller and velocity observer for nonlinear mechanical systems[J]. Automatica, 2004, 40(4): 695-700.
[15] YUE X, YAO J Y. Asymptotic tracking control of electro-hydraulic load simulator based on integral robust[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 420269(in Chinese). 岳欣, 姚建勇. 基于积分鲁棒的电液负载模拟器渐近跟踪控制[J]. 航空学报, 2017, 38(2): 420269.
[16] YAO J Y, DENG W X, JIAO Z X. Rise-based adaptive control of hydraulic systems with asymptotic tracking[J]. IEEE Transactions on Automation Science and Engineering, 2015, 99: 1-8.
[17] HERBERT E M. Hydraulic control systems[M]. New York: John Wiley & Sons, Inc., 1967: 165-167.
[18] FITCH E C, HONG I T. Hydraulic component design and selection[M]. Stillwater: Bar Dyne, Inc., 2004: 52-59.
[19] KHALIL H. Nonlinear systems[M]. Upper Saddle River: Prentice-Hall, 2002: 218.
[20] YANG X W, YAO J Y, DENG W X. Output feedback adaptive super-twisting sliding mode control of hydraulic systems with disturbance compensation[J]. ISA Transactions, 2021, 109: 175-185.