Review

Research progress and prospect of fatigue and structural integrity for aeronautical industry in China

  • WANG Binwen ,
  • CHEN Xianmin ,
  • SU Yunlai ,
  • SUN Hanbin ,
  • YANG Yu ,
  • FAN Junling
Expand
  • Aircraft Strength Research Institute of China, Xi'an 710065, China

Received date: 2020-08-17

  Revised date: 2020-11-04

  Online published: 2021-06-01

Abstract

In China, as the improvement of aeronautical industry, fatigue and structural integrity become one of the key problems that affect the life, safety and reliability of aircraft structures. After years of hard-working, aircraft design philosophy evolved gradually from static strength to safe-life, and now to fatigue and structural integrity as a guide. Aircraft structural integrity program has been implemented successfully into structural development for several new types. The service life, reliability and economy of the new generation aircraft structure have been improved significantly. However, with the improvement of aeronautical technology and the development requirements for new aircrafts, many new problems emerged in this area. From the perspective of aeronautical industry, this paper combs the progress and main achievements of aeronautical fatigue research in China, and focuses on the research status and engineering applications in the aspects of material/structure/process, analysis and evaluation method, fatigue test technology and service life management since 2000. Finally, some aeronautical fatigue research directions need to be focused on were proposed in order to provide reference for the further development of domestic aeronautical structures.

Cite this article

WANG Binwen , CHEN Xianmin , SU Yunlai , SUN Hanbin , YANG Yu , FAN Junling . Research progress and prospect of fatigue and structural integrity for aeronautical industry in China[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(5) : 524651 -524651 . DOI: 10.7527/S1000-6893.2020.24651

References

[1] NPFC.Airplane strength and rigidity ground tests:MIL-STD-008867B[S]. 1975.
[2] MANNING S D, YANG J N, SHINOZUKA M, et al. Durability methods development, Volume I-Phase I summary air force flight dynamics Lab:AFFDL-TR-79-3118[S].Air Force Flight Dynamic Lab, 1979.
[3] MANNING S D, YANG J N, SHINOZUKA M, et al. Durability methods development, Volume II-Durability analysis:State-of-the-art assessment:AFFDL-TR-79-3118[S]. Air Force Flight Dynamics Lab, 1979.
[4] MANNING S D, YANG J N. 美国空军耐久性设计手册[M]. 航空航天工业部《AFFD》系统工程, 译. 1991. MANNING S D, YANG J N. USAF durability design handbook[M]. AFFD Engineering System of the Ministry of Aeronautics and Astronautics, translated,1991(in Chinese).
[5] GALLAGHER J P, GIESSLER F J, BERENS A P,等.美国空军损伤容限设计手册[M]. 航空航天工业部科学技术研究院, 译. 西安:西北工业大学出版社, 1989. GALLAGHER J P, GIESSLER F J, BERENS A P, et al. USAF damage tolerant design handbook[M]. Chinese Aeronautics and Astronautics Establishment, translated. Xi'an:Northwestern Polytechnical University Press, 1989(in Chinese).
[6] 高镇同. 疲劳应用统计学[M]. 北京:国防工业出版社, 1986. GAO Z T.Applied statistics in fatigue[M]. Beijing:National Defense Industry Press, 1986(in Chinese).
[7] PROVAN J W. 概率断裂力学和可靠性[M]. 航空航天工业部《AFFD》系统工程办公室, 译. 北京:航空工业出版社, 1989. PROVAN J W. Probabilistic fracture mechanics and reliability[M]. AFFD Engineering System of the Ministry of Aeronautics and Astronautics, translated. Beijing:Aviation Industry Press, 1989(in Chinese).
[8] 张俊华. 结构强度可靠性设计指南(金属结构部分)[M]. 北京:宇航出版社, 1994. ZHANG J H. Structural strength reliability design guide (metal structure part)[M]. Beijing:China Aerospace Publishing House, 1994(in Chinese).
[9] 王俊扬, 郑旻仲. 为新型飞机研制提供《AFFD》技术:航空航天部《AFFD》系统工程[J]. 航空学报, 1989, 10(12):565-569. WANG J Y, ZHENG M Z. AFFD technology for new airplane design:AFFD Engineering System of The Ministry of Aeronautics and Astronautics[J]. Acta Aeronautica et Astronautica Sinica, 1989, 10(12):565-569(in Chinese).
[10] 董登科. 现代飞机结构灾难性疲劳破坏预测与控制技术研究[D]. 南京:南京航空航天大学, 2000. DONG D K. Research on prediction and control of catastrophic fatigue failure of modern aircraft structures[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2000(in Chinese).
[11] 潘龙社. 谈谈飞机结构的抗疲劳细节设计[J]. 中国新技术新产品, 2014(1):136-137. PAN L S. On the anti-fatigue detail design of aircraft structure[J]. China New Technologies and Products, 2014(1):136-137(in Chinese).
[12] 尹登峰, 郑子樵. 铝锂合金研究开发的历史与现状[J]. 材料导报, 2003, 17(2):18-20. YIN D F, ZHENG Z Q. History and current status of aluminum-lithium alloys research and development[J]. Materials Review, 2003, 17(2):18-20(in Chinese).
[13] 李红萍, 叶凌英, 邓运来, 等. 航空铝锂合金研究进展[J]. 中国材料进展, 2016, 35(11):856-862. LI H P, YE L Y, DENG Y L, et al.Progress of aircraft Al-Li alloys[J]. Materials China, 2016, 35(11):856-862(in Chinese).
[14] 谢长生. 人类文明的基石:材料科学技术[M]. 武汉:华中理工大学出版社, 2000. XIE C S. The cornerstone of human civilization:Material science and technology[M]. Wuhan:Huazhong University of Science & Technology Press, 2000(in Chinese).
[15] 陈圆圆, 郑子樵, 蔡彪, 等. 2197(Al-Li)-T851合金的疲劳裂纹萌生与扩展行为研究[J]. 稀有金属材料与工程, 2011, 40(11):1926-1930. CHEN Y Y, ZHENG Z Q, CAI B, et al. Initiation and propagation behavior of fatigue cracks in 2197(Al-Li)-T851 alloy[J]. Rare Metal Materials and Engineering, 2011, 40(11):1926-1930(in Chinese).
[16] 许罗鹏, 曹小建, 李久楷, 等. 铝锂合金2198-T8高周疲劳性能及其裂纹萌生机理[J]. 稀有金属材料与工程, 2017, 46(1):83-89. XU L P, CAO X J, LI J K, et al. High cycle fatigue properties and crack initiationmechanisms of Al-Li 2198-T8 alloy[J]. Rare Metal Materials and Engineering, 2017, 46(1):83-89(in Chinese).
[17] 张庆友. 喷射成形2195铝锂合金微观组织演变及低周疲劳行为研究[D]. 济南:山东大学, 2019. ZHANG Q Y. Research on spray-formed 2195aluminum-lithium alloy microstructure evolution and low-cycle fatigue behavior[D]. Ji'nan:Shandong University, 2019(in Chinese).
[18] 王俭堂. 2297-T87铝锂合金厚板各向异性和疲劳性能研究[D]. 长沙:湖南大学, 2018. WANG J T. Study on anisotropy and fatigue properties of 2297-T87 Al-Li alloy thick plate[D]. Changsha:Hunan University, 2018(in Chinese).
[19] WU W T, LIU Z Y, BAI S, et al. Anisotropy in fatigue crack propagation behavior of Al-Cu-Li alloy thick plate[J]. Materials Characterization, 2017, 131:440-449.
[20] 苏运来, 常文魁, 陈先民, 等. 喷丸强化对Al-Li-XX和2XXX铝锂合金疲劳性能的影响[J]. 科学技术与工程, 2020, 20(29):12191-12195. SU Y L, CHANG W K, CHEN X M, et al.Influence of shot peening on fatigue life of Al-Li-XX and 2XXX Al-Li alloys[J]. Science Technology and Engineering, 2020, 20(29):12191-12195(in Chinese).
[21] 陈安, 许飞, 闫文伟, 等. 基于DFR法的Al-Li-S4铝锂合金铆接结构疲劳可靠性分析[J]. 航空工程进展, 2016, 7(1):101-105. CHEN A, XU F, YAN W W, et al. Fatigue reliability analysis ofAl-Li-S4 riveted joints based on detail fatigue rating[J]. Advances in Aeronautical Science and Engineering, 2016, 7(1):101-105(in Chinese).
[22] 徐一新. 中航工业洪都交付C919机身等直段部段:国内首次将铝锂合金材料应用于飞机制造[N]. 中国航空报, 2010-12-04(1). XU Y X. AVIC Hongdu delivered C919 fuselage and other straight sections:the first aluminum lithium alloy material applied to aircraft manufacturing in China[N]. China Aviation News, 2010-12-04(1).
[23] 马玉娥, 王博, 熊晓枫. 玻璃纤维铝合金层板(FMLs)的疲劳损伤特性及S-N曲线[J]. 西北工业大学学报, 2016, 34(2):222-226. MA Y E, WANG B, XIONG X F.Experimental study of fatigue damage of glass-fiber reinforced aluminum laminates (FMLs)[J]. Journal of Northwestern Polytechnical University, 2016, 34(2):222-226(in Chinese).
[24] 田精明. GLARE层板铆接工艺及对疲劳寿命影响研究[D]. 南京:南京航空航天大学, 2018. TIAN J M. Riveting process and its effects on fatigue life of GLARE laminates[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018(in Chinese).
[25] 张嘉振, 白士刚, 周振功. 拉-压加载下纤维增强铝合金层板疲劳裂纹扩展的压载荷效应与预测模型[J]. 复合材料学报, 2012, 29(4):163-169. ZHANG J Z, BAI S G, ZHOU Z G.Effect of compression loading on the fatigue crack growth in fiber reinforced aluminium laminates and prediction model[J]. Acta Materiae Compositae Sinica, 2012, 29(4):163-169(in Chinese).
[26] 崔海超, 熊磊, 马宏毅, 等. 玻璃纤维-铝合金层合板湿热老化性能研究[J]. 玻璃钢/复合材料, 2017(10):89-93, 10. CUI H C, XIONG L, MA H Y, et al.Investigation of hydrothermal aging mechanical properties of glass fiber-aluminum laminate[J]. Fiber Reinforced Plastics/Composites, 2017(10):89-93,10(in Chinese).
[27] MATTHEWS F L, RAWLINGS R D. Composite materials:Engineering and science[M]. London:Chapman & Hall, 1994.
[28] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DU S Y. Advanced composite materials and aerospaceengineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12(in Chinese).
[29] ATADERO R A, KARBHARI V M. Calibration of resistance factors for reliability based design of externally-bonded FRP composites[J]. Composites Part B:Engineering, 2008, 39(4):665-679.
[30] MAROUANI S, CURTIL L, HAMELIN P. Composites realized by hand lay-up process in a civil engineering environment:initial properties and durability[J]. Materials and Structures, 2008, 41(5):831-851.
[31] LIU X Y, CAI J, LUO S N. Interfacial anti-fatigue effect in graphene-copper nanolayered composites under cyclic shear loading[J]. Physical Chemistry Chemical Physics, 2018, 20(11):7875-7884.
[32] LIAO Q, XIE X X, YU J T, et al. A theoretical model for the anti-fatigue design of steel reinforced ECC composite system under flexure[J]. Composite Structures, 2020, 244:112293.
[33] 吴富强, 姚卫星. 一种复合材料层合板的S-N曲线模型[J]. 机械强度, 2004, 26(z1):127-129. WU F Q, YAO W X. S-N curve model of composite laminate[J]. Journal of Mechanical Strength, 2004, 26(z1):127-129(in Chinese).
[34] WANG F S, DING N, LIU Z Q, et al. Ablation damage characteristic and residual strength prediction of carbon fiber/epoxy composite suffered from lightning strike[J]. Composite Structures, 2014, 117(1):222-233.
[35] 廉伟, 姚卫星. 复合材料层压板剩余刚度-剩余强度关联模型[J]. 复合材料学报, 2008, 25(5):151-156. LIAN W, YAO W X. Residual stiffness-residual strength coupled model of composite laminates[J]. Acta Materiae Compositae Sinica, 2008, 25(5):151-156(in Chinese).
[36] SHAN M J, ZHAO L B, HONG H M, et al. A progressive fatigue damage model for composite structures in hygrothermal environments[J]. International Journal of Fatigue, 2018, 111:299-307.
[37] LI L B. A hysteresis energy dissipation based model for multiple loading damage in continuous fiber-reinforced ceramic-matrix composites[J]. Composites Part B:Engineering, 2019, 162:259-273.
[38] CHEN P H, SHEN Z, WANG J Y. Prediction of the strength of notched fiber-dominated composite laminates[J]. Composites Science and Technology, 2001, 61(9):1311-1321.
[39] 姚卫星, 颜永年, 俞新陆. 预测复合材料缺口强度的场强法[J]. 复合材料学报, 1994, 11(1):67-72. YAO W X, YAN Y N, YU X L. The method of stress field intensity for predicting notched strength of composites[J]. Acta Materiae Compositae Sinica, 1994, 11(1):67-72(in Chinese).
[40] PETTIT R G, WANG J J, TOH C. Validated feasibility study of integral stiffened metallic fuselage panels for reducing manufacturing costs[M].Washington,D.C.:NASA Langley Research Center, 2000.
[41] 董亚南. 铝合金整体壁板多点对压成形的裂纹预测与控制[D]. 长春:吉林大学, 2016. DONG Y N. Prediction and control of fracture in multi-point press forming of aluminum alloy integral panel[D]. Changchun:Jilin University, 2016(in Chinese).
[42] POE C C. Fatigue crack propagation in stiffened panels[J]. ASTM STP, 1971, 486:79-97.
[43] 李亚智, 张向. 整体加筋壁板的破损安全特性与断裂控制分析[J]. 航空学报, 2006, 27(5):842-846. LI Y Z, ZHANG X. An analysis of fail-safety and fracture control of integrally stiffened panels[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5):842-846(in Chinese).
[44] 杨翔宁, 许希武, 郭树祥. 典型加筋板结构面内裂纹偏转与扩展行为分析[J]. 哈尔滨工业大学学报, 2017, 49(4):42-47. YANG X N, XU X W, GUO S X. Analysis of crack turning and fracture characteristics of a stiffened panel[J]. Journal of Harbin Institute of Technology, 2017, 49(4):42-47(in Chinese).
[45] 张博平, 郭小华, 史仁义, 等. 带止裂筋整体翼梁结构的破损安全分析与试验[J]. 航空工程进展, 2014, 5(1):53-58. ZHANG B P, GUO X H, SHI R Y, et al. Fail-safe analysis and test for integral wing structure with stopping-crack stringer[J]. Advances in Aeronautical Science and Engineering, 2014, 5(1):53-58(in Chinese).
[46] 闫晓中, 王生楠, 苏毅. 整体壁板三维裂纹应力强度因子计算与分析[J]. 航空工程进展, 2011, 2(2):205-209. YAN X Z, WANG S N, SU Y. Research and analysis on methods of three-dimensional crack stress intensity factor for integral panel[J]. Advances in Aeronautical Science and Engineering, 2011, 2(2):205-209(in Chinese).
[47] 陈安, 魏玉龙, 廖江海, 等. 机身加筋壁板复合加载损伤容限性能试验[J]. 航空学报, 2017, 38(1):420093. CHEN A, WEI Y L, LIAO J H, et al. Damage tolerance test of stiffened fuselage panel under complex load[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):420093(in Chinese).
[48] NIEPOKOLCZYCKI A, KOMOROWSKI J. ICAF 2019-structural integrity in the age of additive manufacturing[M]. Cham:Springer International Publishing, 2020.
[49] 阳波, 苟文博, 赖丽珍, 等. 大型整体壁板展开技术研究[J]. 机械制造, 2017, 55(1):66-68. YANG B, GOU W B, LAI L Z, et al. Study on the deployment technique of large integral wall[J]. Machinery, 2017, 55(1):66-68(in Chinese).
[50] 袁丁, 高华兵, 孙小婧, 等. 改善金属增材制造材料组织与力学性能的方法与技术[J]. 航空制造技术, 2018, 61(10):40-48. YUAN D, GAO H B, SUN X J, et al. Methods and techniques for improving microstructure and performance of metal additively manufactured materials[J]. Aeronautical Manufacturing Technology, 2018, 61(10):40-48(in Chinese).
[51] 高玉魁, 赵振业. 齿轮的表面完整性与抗疲劳制造技术的发展趋势[J]. 金属热处理, 2014, 39(4):1-6. GAO Y K, ZHAO Z Y. Development trend of surface integrity and anti-fatigue manufacture of gears[J]. Heat Treatment of Metals, 2014, 39(4):1-6(in Chinese).
[52] 任永明, 林鑫, 黄卫东. 增材制造Ti-6Al-4V合金组织及疲劳性能研究进展[J]. 稀有金属材料与工程, 2017, 46(10):3160-3168. REN Y M, LIN X, HUANG W D. Research progress of microstructure and fatigue behavior in additive manufacturing Ti-6Al-4V alloy[J]. Rare Metal Materials and Engineering, 2017, 46(10):3160-3168(in Chinese).
[53] 杨光, 刘佳蓬, 钦兰云, 等. 激光沉积TA15钛合金高周疲劳性能研究[J]. 稀有金属, 2018, 42(11):1134-1142. YANG G, LIU J P, QIN L Y, et al. High cycle fatigue properties of laser deposited TA15 titanium alloy[J]. Chinese Journal of Rare Metals, 2018, 42(11):1134-1142(in Chinese).
[54] 贺瑞军, 王华明. 激光沉积Ti-6Al-2Zr-Mo-V钛合金高周疲劳性能[J]. 航空学报, 2010, 31(7):1488-1493. HE R J, WANG H M. HCF properties of laser deposited Ti-6Al-2Zr-Mo-V alloy[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7):1488-1493(in Chinese).
[55] WANG F D, WILLIAMS S, COLEGROVE P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2013, 44(2):968-977.
[56] ZHANG J K, WANG X Y, PADDEA S, et al. Fatigue crack propagation behaviour in wire+arc additive manufactured Ti-6Al-4V:Effects of microstructure and residual stress[J]. Materials and Design, 2016, 90:551-561.
[57] ZHANG H Y, DONG D K, SU S P, et al. Experimental study of effect of post processing on fracture toughness and fatigue crack growth performance of selective laser melting Ti-6Al-4V[J]. Chinese Journal of Aeronautics, 2019, 32(10):2383-2393.
[58] 马玉娥, 孙文博, 艾霄鹏, 等. SLM打印钛合金的疲劳性能研究[C]//2018年全国固体力学学术会议论文集, 2018:671 MA Y E, SUN W B, AI X P, et al. Research on fatigue properties of SLM printed titanium alloy[C]//Proceedings of 2018 National Conference on Solid Mechanics, 2018:671(in Chinese).
[59] 王东坡, 龚宝明, 吴世品, 等. 焊接接头与结构疲劳延寿技术研究进展综述[J]. 华东交通大学学报, 2016, 33(6):1-14. WANG D P, GONG B M, WU S P, et al. Research review on fatigue life improvement of welding joint and structure[J]. Journal of East China Jiaotong University, 2016, 33(6):1-14(in Chinese).
[60] FAN J L, GUO X L, WU C W, et al. Research on fatigue behavior evaluation and fatigue fracture mechanisms of cruciform welded joints[J]. Materials Science and Engineering:A, 2011, 528(29-30):8417-8427.
[61] 黄彪, 唐正平, 陈鑫, 等. 6061-T6铝合金激光焊接接头腐蚀疲劳裂纹扩展[J]. 精密成形工程, 2017, 9(2):27-33. HUANG B, TANG Z P, CHEN X, et al. Corrosion fatigue crack growth in laser welded 6061-T6 aluminum alloy[J]. Journal of Netshape Forming Engineering, 2017, 9(2):27-33(in Chinese).
[62] 许良, 费昺强, 回丽, 等. 钛合金激光/氩弧斜焊缝疲劳性能对比研究[J]. 科学技术与工程, 2017, 17(6):167-171. XU L, FEI B Q, HUI L, et al. Comparative study of fatigue performance of titanium alloy with laser and TIG oblique welds[J]. Science Technology and Engineering, 2017,17(6):167-171(in Chinese).
[63] 马国栋. 搅拌摩擦焊接接头的损伤累积规律的研究[D]. 北京:北京交通大学, 2016. MA G D. Research on the regularity of friction stir welded joint damage accumulation[D]. Beijing:Beijing Jiaotong University, 2016(in Chinese).
[64] LIU Z M, CHEN S Y, YUAN X, et al. Magnetic-enhanced keyhole TIG welding process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(1-4):275-285.
[65] 赵小辉. 几种航空材料焊接接头疲劳性能研究[D]. 天津:天津大学, 2009. ZHAO X H. Research on fatigue properties of welded joints about several materials in aerospace[D]. Tianjin:Tianjin University, 2009(in Chinese).
[66] 李杰. 激光喷丸对7075铝合金搅拌摩擦焊接头的影响[J]. 宇航材料工艺, 2010, 40(1):60-63. LI J. Effects of laser peen on 7075 aluminum alloy friction stir welding joints[J]. Aerospace Materialsand Technology, 2010, 40(1):60-63(in Chinese).
[67] 钱晓明, 姜银方, 管海兵, 等. 飞机结构件紧固孔强化技术综述[J]. 机械强度, 2011, 33(5):749-753. QIAN X M, JIANG Y F, GUAN H B, et al. Research and application of strengthening technology for fastening holes of aircraft structures[J]. Journal of Mechanical Strength, 2011, 33(5):749-753(in Chinese).
[68] CHAKHERLOU T N, VOGWELL J. The effect of cold expansion on improving the fatigue life of fastener holes[J]. Engineering Failure Analysis, 2003, 10(1):13-24.
[69] 王欣, 胡仁高, 胡博, 等. 孔挤压对于高温合金GH4169孔结构高温疲劳性能的影响[J]. 航空动力学报, 2017, 32(1):89-95. WANG X, HU R G, HU B, et al. Effect of hole-expansion on high-temperature fatigue property of GH4169 superalloy hole structure[J]. Journal of Aerospace Power, 2017, 32(1):89-95(in Chinese).
[70] 葛恩德, 苏宏华, 程远庆, 等. TC4板孔冷挤压强化残余应力分布与疲劳寿命[J]. 中国机械工程, 2015, 26(7):971-976. GE E D, SU H H, CHENG Y Q, et al. Residual stress fields and fatigue life of cold expansion hole in titanium alloyTC4[J]. China Mechanical Engineering, 2015, 26(7):971-976(in Chinese).
[71] 葛恩德, 傅玉灿, 苏宏华, 等. TC21钛合金板孔冷挤压残余应力与疲劳性能研究[J]. 稀有金属材料与工程, 2016, 45(5):1189-1195. GE E D, FU Y C, SU H H, et al. Residual stress and fatigue properties of the cold hole expansion process in titanium alloy TC21 plates[J]. Rare Metal Materials and Engineering, 2016, 45(5):1189-1195(in Chinese).
[72] 王燕礼, 朱有利, 曹强, 等. 孔挤压强化技术研究进展与展望[J]. 航空学报, 2018, 39(2):021336. WANG Y L, ZHU Y L, CAO Q, et al. Progress and prospect of research on hole cold expansion technique[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):021336(in Chinese).
[73] WANG Y L, ZHU Y L, HOU S, et al. Investigation on fatigue performance of cold expansion holes of 6061-T6 aluminum alloy[J]. International Journal of Fatigue, 2017, 95:216-228.
[74] 杨洪源, 刘文珽. 孔挤压强化疲劳增寿效益的试验研究[J]. 机械强度, 2010, 32(3):446-450. YANG H Y, LIU W T. Test research on fatigue life enhancing effect of cold-expanding hole[J]. Journal of Mechanical Strength, 2010, 32(3):446-450(in Chinese).
[75] 王彩勇. 小直径开缝衬套冷挤压强化孔疲劳寿命研究[D]. 南京:南京航空航天大学, 2016. WANG C Y. Research on fatigue life for small diameter split sleeve cold expansion strengthening hole[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016(in Chinese).
[76] 欧阳小穗. 孔挤压强化工艺对叠层元件疲劳寿命影响分析[D]. 上海:上海交通大学, 2011. OUYANG X S. Effect of cold expansion on fatigue life of metal laminated elements[D]. Shanghai:Shanghai Jiaotong University, 2011(in Chinese).
[77] 黄志超, 吕世亮, 谢春辉, 等. 先进喷丸表面改性技术研究进展[J]. 材料科学与工艺, 2015, 23(3):57-61. HUANG Z C, LYV S L, XIE C H, et al. Development on surface modification technology of advanced shot peening[J]. Materials Science and Technology, 2015, 23(3):57-61(in Chinese).
[78] 张炜, 曹亮, 高国强, 等. 国内外航空喷丸技术与装备发展[J]. 航空制造技术, 2013, 56(17):32-35. ZHANG W, CAO L, GAO G Q, et al. Development of shot peening technology and equipment in aviation industry[J]. Aeronautical Manufacturing Technology, 2013, 56(17):32-35(in Chinese).
[79] 周松, 谢里阳, 回丽, 等. 喷丸强化对2XXX铝合金疲劳寿命的影响[J]. 材料工程, 2014, 42(12):86-91. ZHOU S, XIE L Y, HUI L, et al. Influence of shot peening on fatigue life of 2XXX aluminum alloy[J]. Journal of Materials Engineering, 2014, 42(12):86-91(in Chinese).
[80] 王欣, 李旭东, 宋颖刚, 等. 三种典型发动机用材料疲劳极限应力集中敏感性及喷丸的影响[J]. 航空材料学报, 2017, 37(6):102-107. WANG X, LI X D, SONG Y G, et al.Effect of Shot peening on fatigue limit stress concentration sensitivity of 3 kinds of typical materials for aeroengine[J]. Journal of Aeronautical Materials, 2017, 37(6):102-107(in Chinese).
[81] 章艳, 张兴权, 左立生, 等. 激光喷丸强化对半圆孔件疲劳寿命的影响[J]. 材料科学与工艺, 2015, 23(2):19-24. ZHANG Y, ZHANG X Q, ZUO L S, et al. Effect of laser shot peening on fatigue life of semicircle hole specimen[J]. Materials Science and Technology, 2015, 23(2):19-24(in Chinese).
[82] 杨坤. 喷丸校形对薄壁蒙皮结构疲劳性能影响的研究[J]. 中国科技信息, 2015(15):29-30. YANG K.Effect of shot peening on fatigue properties of thin-walled fuselage[J]. China Science and Technology Information, 2015(15):29-30(in Chinese).
[83] 田宇, 王丽艳, 李明君, 等. TC11钛合金液体喷丸疲劳性能研究[J]. 大型铸锻件, 2015(6):22-24. TIAN Y, WANG L Y, LI M J, et al. Research on fatigue property of liquid shot blasting treated TC11 titanium alloy[J]. Heavy Casting and Forging, 2015(6):22-24(in Chinese).
[84] 徐滨士. 再制造工程与自动化表面工程技术[J]. 金属热处理, 2008, 33(1):9-14. XU B S. Remanufacturing engineering and automatic surface engineering technology[J]. Heat Treatment of Metals, 2008, 33(1):9-14(in Chinese).
[85] 余江, 姜银方, 戴亚春, 等. 铝合金紧固孔复合强化工艺研究[J]. 表面技术, 2016, 45(11):153-158. YU J, JIANG Y F, DAI Y C, et al. Composite strengthening process of aluminum alloy fastener holes[J]. Surface Technology, 2016, 45(11):153-158(in Chinese).
[86] 王科昌, 罗学昆, 刘克辉, 等. 表面加工方法对TC4钛合金表面完整性及高周疲劳性能的影响[J]. 钛工业进展, 2018, 35(3):39-44. WANG K C, LUO X K, LIU K H, et al. Effect of surface processing methods on surface integrity and high-cycle fatigue property of TC4 titanium alloy[J]. Titanium Industry Progress, 2018, 35(3):39-44(in Chinese).
[87] 樊俊铃, 郭杏林, 吴承伟. 疲劳特性的红外热像定量分析方法研究进展[J]. 力学与实践, 2012, 34(6):7-17. FAN J L, GUO X L, WU C W. Fatigue characterisation based on quantitative infrared thermography[J]. Mechanics in Engineering, 2012, 34(6):7-17(in Chinese).
[88] LIU X W, LU D G, HOOGENBOOM P C J. Hierarchical Bayesian fatigue data analysis[J]. International Journal of Fatigue, 2017, 100:418-428.
[89] LU S, SU Y L, YANG M, et al. A modified walker model dealing with mean stress effect in fatigue life prediction for aeroengine disks[J]. Mathematical Problems in Engineering, 2018, 2018:1-12.
[90] 张天宇, 何宇廷, 陈涛, 等. 一种多钉铆接连接件的疲劳寿命分析方法[J]. 北京航空航天大学学报, 2018, 44(9):1933-1940. ZHANG T Y, HE Y T, CHEN T, et al. A fatigue life analysis method for multiple riveted joint[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9):1933-1940(in Chinese).
[91] 石亮, 魏大盛, 王延荣. 考虑应力梯度的轮盘疲劳寿命预测[J]. 航空动力学报, 2013, 28(6):1236-1242. SHI L, WEI D S, WANG Y R. Fatigue life prediction of turbine disk based on stress gradient[J]. Journal of Aerospace Power, 2013, 28(6):1236-1242(in Chinese).
[92] 刘香, 王延荣, 田爱梅, 等. 考虑尺寸效应的缺口疲劳寿命预测方法[J]. 航空动力学报, 2017, 32(2):429-437. LIU X, WANG Y R, TIAN A M, et al. A life prediction method for size effects on notched fatigue[J]. Journal of Aerospace Power, 2017, 32(2):429-437(in Chinese).
[93] 魏大盛, 陈妍妍, 王延荣, 等. 基于表面缺陷特征的疲劳寿命预测方法[J]. 航空动力学报, 2019, 34(1):92-98. WEI D S, CHEN Y Y, WANG Y R, et al. Fatigue life prediction method based on the features of surface defects[J]. Journal of Aerospace Power, 2019, 34(1):92-98(in Chinese).
[94] 苏运来, 陆山, 杨茂, 等. 考虑缺口和体积效应的轮盘等效体积概率寿命分析方法[J]. 推进技术, 2018, 39(12):2820-2827. SU Y L, LU S, YANG M, et al. Equivalent volume analysis method accounting for notch effect and volume effect on probabilistic fatigue life estimation for disk[J]. Journal of Propulsion Technology, 2018, 39(12):2820-2827(in Chinese).
[95] 夏天翔, 姚卫星, 李旭东, 等. 工程构件疲劳寿命估算的三维临界域法[J]. 南京航空航天大学学报, 2014, 46(3):395-402. XIA T X, YAO W X, LI X D, et al. Three-dimensional critical zone approach for fatigue lifetime prediction of engineering structure[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(3):395-402(in Chinese).
[96] YAO W X. Stress field intensity approach for predicting fatigue life[J]. International Journal of Fatigue, 1993, 15(3):243-246.
[97] 郑晓玲. 民机结构耐久性与损伤容限设计手册[M]. 北京:航空工业出版社, 2003. ZHENG X L.Civil aircraft structure durability and damage tolerance design manual[M]. Beijing:Aviation Industry Press, 2003(in Chinese).
[98] 董登科, 杨玉恭. 疲劳破坏概率分析中的细节疲劳额定值研究[J]. 工程力学, 1998, 15(增刊1):266-270. DONG D K, YANG Y G.Research on detailed fatigue rating in fatigue failure probability analysis[J]. Engineering Mechanics, 1998, 15(Sup1):266-270(in Chinese).
[99] 陈先民, 董登科, 李珊山. 细节疲劳额定值法的拓展应用研究[J]. 应用力学学报, 2014, 31(3):473-477,498. CHEN X M, DONG D K, LI S S. Developing applications ofdetail-fatigue-rating method[J]. Chinese Journal of Applied Mechanics, 2014, 31(3):473-477,498(in Chinese).
[100] 樊俊铃. 基于Gerber模型的DFR法与结构细节效应[J]. 航空材料学报, 2016, 36(2):80-86. FAN J L. DFR method and structural detail effect based on gerber model[J]. Journal of Aeronautical Materials, 2016,36(2):80-86(in Chinese).
[101] 黄啸, 刘建中, 马少俊, 等. 细节疲劳额定强度计算参量取值敏感性研究[J]. 航空学报, 2012, 33(5):863-870. HUANG X, LIU J Z, MA S J, et al. Sensitivity analysis of the parameters in detail fatigue rating equation[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(5):863-870(in Chinese).
[102] 陈跃良, 吴省均, 卞贵学, 等. 基于Gerber模型的DFR腐蚀折算系数及其试验测定[J]. 材料导报, 2019, 33(16):2793-2798. CHEN Y L, WU X J, BIAN G X, et al. Theoretical and experimental determination of DFR-corrosion-influence-factors based on Gerber model[J]. Materials Reports, 2019, 33(16):2793-2798(in Chinese).
[103] 宋恩鹏, 曹奇凯, 赵清华, 等. 军机DFR方法在钛合金电子束横焊缝结构上的应用验证[J]. 应用力学学报, 2014, 31(5):715-720,829. SONG E P, CAO Q K, ZHAO Q H, et al. Military aircraft application and validation of DFR method in Ti alloy welding structure[J]. Chinese Journal of Applied Mechanics, 2014, 31(5):715-720,829(in Chinese).
[104] 王晓玮, 尚德广, 熊健. 多轴载荷下结构细节疲劳强度额定值确定方法[J]. 装备环境工程, 2018, 15(3):92-97. WANG X W, SHANG D G, XIONG J. Determination ofdetail fatigue rating of structure under multiaxial loading[J]. Equipment Environmental Engineering, 2018, 15(3):92-97(in Chinese).
[105] 董彦民, 刘文珽, 杨超. 军用飞机结构耐久性设计的细节疲劳额定值方法[J]. 航空学报, 2010, 31(12):2357-2364. DONG Y M, LIU W T, YANG C. Military aircraft durability design method based on detail fatigue rating[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(12):2357-2364(in Chinese).
[106] 董登科, 王俊扬, 孔繁杰. 紧固孔原始疲劳质量控制与制孔技术研究[J]. 机械强度, 2000, 22(3):214-216,230. DONG D K, WANG J Y, KONG F J. Research on fastener hole initial fatigue quality and manufacter technique[J]. Journal of Mechanical Strength, 2000, 22(3):214-216,230(inChinese).
[107] 周俊杰, 王生楠. 飞机机翼壁板紧固孔细节原始疲劳质量评估[J]. 西北工业大学学报, 2018, 36(1):91-95. ZHOU J J, WANG S N. Initial fatigue quality assessment for aircraft wing panel fastener hole[J]. Journal of Northwestern Polytechnical University, 2018, 36(1):91-95(in Chinese).
[108] 贺小帆, 隋芳媛, 王天帅, 等. 机群结构耐久性分析的裂纹萌生方法[J]. 北京航空航天大学学报, 2016, 42(5):865-870. HE X F, SUI F Y, WANG T S, et al. Crack initiation approach for durability analysis on aircraft structures of a fleet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5):865-870(in Chinese).
[109] 张胜, 何宇廷, 张腾, 等. 飞机典型连接结构原始疲劳质量评估[J]. 机械强度, 2016, 38(3):480-484. ZHANG S, HE Y T, ZHANG T, et al. Assessment on initial fatigue quality of aircraft typical connected structure[J]. Journal of Mechanical Strength, 2016, 38(3):480-484(in Chinese).
[110] 毛可毅, 于朋涛, 牟浩蕾, 等. 广布疲劳损伤裂纹萌生问题研究[J]. 机械科学与技术, 2015, 34(4):653-656. MAO K Y, YU P T, MOU H L, et al. Study on initiation of wide-spread fatigue damage cracking[J]. Mechanical Science and Technology, 2015,34(4):653-656(in Chinese).
[111] 王森, 刘马宝, 王国力, 等. 广布损伤的试验研究与有限元分析[J]. 航空学报, 2010, 31(8):1578-1583. WANG S, LIU M B, WANG G L, et al. Test research and finite element analysis on multiple site damage[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8):1578-1583(in Chinese).
[112] 李政鸿, 徐武, 张晓晶, 等. 多孔多裂纹平板的疲劳裂纹扩展试验与分析方法[J]. 航空学报, 2018, 39(7):221867. LI Z H, XU W, ZHANG X J, et al. Experimental and analytical analyses of fatigue crack growth in sheets with multiple holes and cracks[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7):221867(in Chinese).
[113] 廖敏, 孙秦, 徐晓飞. 含多裂纹连接结构损伤容限试验研究[J]. 航空学报, 1998, 19(1):103-106. LIAO M, SUN Q, XU X F. Experimental investigation fordamage tolerance of fastener joint in presence of multiple site damage[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(1):103-106(in Chinese).
[114] 赵晋芳, 谢里阳, 刘建中, 等. 有限板共线多孔MSD疲劳裂纹扩展有限元模拟[J]. 工程设计学报, 2009, 16(4):256-260. ZHAO J F, XIE L Y, LIU J Z, et al. Finite element simulation of fatigue crack growth of MSD with multiple collinear holes on finite plate[J]. Journal of Engineering Design, 2009, 16(4):256-260(in Chinese).
[115] GALATOLO R, NILSSON K F. An experimental and numerical analysis of residual strength of butt-joints panels with multiple site damage[J]. Engineering Fracture Mechanics, 2001, 68(13):1437-1461.
[116] 杜永恩, 王生楠, 闫晓中. 基于Neumann展开的Monte-Carlo随机扩展有限元法[J]. 西北工业大学学报, 2013, 31(3):413-416. DU Y E, WANG S N, YAN X Z. Stochastically extended finite element method based on Neumann expansion[J]. Journal of Northwestern Polytechnical University, 2013, 31(3):413-416(in Chinese).
[117] 杜永恩, 王生楠. 飞机结构MSD失效概率的敏感性分析[J]. 北京航空航天大学学报, 2014, 40(5):658-661. DU Y E, WANG S N. Probabilistic sensitivity for failure of multiple site damage in aircraft structures[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(5):658-661(in Chinese).
[118] ANTUNES F V, BRANCO R, COSTA J D, et al. Plasticity induced crack closure in middle-crack tension specimen:Numerical versus experimental[J]. Fatigue and Fracture of Engineering Materials and Structures, 2010, 33(10):673-686.
[119] WEN P H, ALIABADI M H. A variational approach for evaluation of stress intensity factors using the element free Galerkin method[J]. International Journal of Solids and Structures, 2011, 48(7-8):1171-1179.
[120] 樊俊铃. 基于权函数法的应力强度因子计算和断裂评估[J]. 航空动力学报, 2018, 33(8):1886-1895. FAN J L. Stress intensity factor calculation and fracture evaluation based on weight function method[J]. Journal of Aerospace Power, 2018, 33(8):1886-1895(in Chinese).
[121] 樊俊铃, 郭杏林. 弹塑性疲劳裂纹扩展行为的数值模拟[J]. 机械工程学报, 2015, 51(10):33-40. FAN J L, GUO X L. Numerical simulation on elastic-plastic fatigue crack growth behavior[J]. Journal of Mechanical Engineering, 2015, 51(10):33-40(in Chinese).
[122] XU W, WU X R. Weight functions and strip-yield model analysis for three collinear cracks[J]. Engineering Fracture Mechanics, 2012, 85:73-87.
[123] XU W, WU X R, WANG H. Weight functions and strip yield solution for two equal-length collinear cracks in an infinite sheet[J]. Engineering Fracture Mechanics, 2011, 78(11):2356-2368.
[124] BAO R, ZHANG X, YAHAYA N A. Evaluating stress intensity factors due to weld residual stresses by the weight function and finite element methods[J]. Engineering Fracture Mechanics, 2010, 77(13):2550-2566.
[125] 谢伟杰, 李荻, 胡艳玲, 等. LY12CZ和7075T7351铝合金在EXCO溶液中腐蚀动力学的统计研究[J]. 航空学报, 1999, 20(1):34-38. XIE W J, LI D, HU Y L, et al. Statistical study of corrosion kinetics law forLY12CZ and 7075T7351 aluminum alloy in EXCO solution[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(1):34-38(in Chinese).
[126] 宫经全, 张少钦, 李禾, 等. 基于相互作用积分法的应力强度因子计算[J]. 南昌航空大学学报(自然科学版), 2015, 29(1):42-48. GONG J Q, ZHANG S Q, LI H, et al. Computation of the stress intensity factor based on the interaction integral method[J]. Journal of Nanchang Hangkong University (Natural Sciences), 2015, 29(1):42-48(in Chinese).
[127] 黄甫. 飞机大开口结构的强度因子有限元计算[J]. 中国科技信息, 2014(13):35-36. HUANG F.Finite element calculation of strength factor of aircraft structure with large opening[J]. China Science and Technology Information, 2014(13):35-36(in Chinese).
[128] 樊俊铃, 郭强, 赵延广, 等. 基于有限元法和锁相热像法对含缺陷构件的应力分析与疲劳性能评估[J]. 材料工程, 2015, 43(8):62-71. FAN J L, GUO Q, ZHAO Y G, et al. Stress analysis and fatigue behavior assessment of components with defect based on FEM and lock-in thermography[J]. Journal of Materials Engineering, 2015, 43(8):62-71(in Chinese).
[129] 陈龙, 蔡力勋. 考虑裂尖疲劳损伤的材料疲劳裂纹扩展行为研究[J]. 机械工程学报, 2012, 48(20):54-59. CHEN L, CAI L X. Research on fatigue crack growth behavior of materials by considering the fatigue damage near the crack tip[J]. Journal of Mechanical Engineering, 2012, 48(20):54-59(in Chinese).
[130] 石凯凯, 蔡力勋, 包陈. 预测疲劳裂纹扩展的多种理论模型研究[J]. 机械工程学报, 2014, 50(18):50-58. SHI K K, CAI L X, BAO C. Various theoretical models study of prediction fatigue crack growth[J]. Journal of Mechanical Engineering, 2014, 50(18):50-58(in Chinese).
[131] 赵荣国, 刘亚风, 蒋永洲, 等. 航空发动机涡轮盘用GH4133B合金疲劳裂纹扩展寿命概率预测[J]. 机械工程学报, 2015, 51(18):71-82. ZHAO R G, LIU Y F, JIANG Y Z, et al. Probabilistic fatigue crack propagation life prediction of GH4133B superalloy used in turbine disk of aero-engine[J]. Journal of Mechanical Engineering, 2015, 51(18):71-82(in Chinese).
[132] QIAN J, FATEMI A. Mixed mode fatigue crack growth:A literature survey[J]. Engineering Fracture Mechanics, 1996, 55(6):969-990.
[133] 王昌军, 侯威, 陈四利, 等. Ⅰ-Ⅱ复合型裂纹等εθ线体积应变能断裂准则[J]. 应用力学学报, 2017, 34(1):186-190,206. WANG C J, HOU W, CHEN S L, et al. A bulk strain energy criterion of isoline εθ for mixed mode fracture[J]. Chinese Journal of Applied Mechanics, 2017, 34(1):186-190,206(in Chinese).
[134] 苏少普, 曹淑森, 廖江海, 等. 基于紧凑拉伸剪切结构的复合型疲劳裂纹扩展研究[J]. 应用力学学报, 2020, 37(1):85-90,474. SU S P, CAO S S, LIAO J H, et al. The mixed-mode fatigue crack growth for compact tension shear structures[J]. Chinese Journal of Applied Mechanics, 2020, 37(1):85-90,474(in Chinese).
[135] 李庆芬, 齐桂营, 朱莉, 等. MCTS试件的三维有限元计算断裂分析[J]. 哈尔滨工程大学学报, 2011, 32(9):1157-1162. LI Q F, QI G Y, ZHU L, et al. 3D finite element computationalfracture analysis of an MCTS specimen[J]. Journal of Harbin Engineering University, 2011, 32(9):1157-1162(in Chinese).
[136] 马家升. 三维复合型裂纹应力强度因子有限元分析[D]. 哈尔滨:哈尔滨工程大学, 2008. MA J S. Finite element analysis of 3D mixed-mode fracture stress intensity factors[D]. Harbin:Harbin Engineering University, 2008(in Chinese).
[137] GUO W L. Elastoplastic three dimensional crack border field-II. Asymptotic solution for the field[J]. Engineering Fracture Mechanics, 1993, 46(1):105-113.
[138] GUO W. Recent advances in three-dimensional fracture mechanics[J]. Key Engineering Materials, 2000, 183-187:193-198.
[139] 于培师. 含曲线裂纹结构的三维断裂与疲劳裂纹扩展模拟研究[D]. 南京:南京航空航天大学, 2010. YU P S. Studies on three-dimensional fracture and fatigue crack growth simulation of curve cracked structures[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010(in Chinese).
[140] 郭万林, 于培师. 构件三维断裂与疲劳力学及其在航空工程中的应用[J]. 固体力学学报, 2010, 31(5):553-571. GUO W L, YU P S. Three dimensional fracture and fatigue mechanics of structures and its application in aeronautical engineering[J]. Chinese Journal of Solid Mechanics, 2010, 31(5):553-571(in Chinese).
[141] 柴国钟, 吕君, 鲍雨梅, 等. 表面裂纹疲劳扩展和寿命计算的高效高精度数值分析方法[J]. 航空学报, 2017, 38(12):221291. CHAI G Z, LYU J, BAO Y M, et al. A highly efficient and accurate numerical analysis method for fatigue propagation of surface crack and life prediction[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):221291(in Chinese).
[142] CHERRY M C, MALL S, HEINIMANN B, et al. Residual strength of unstiffened aluminum panels with multiple site damage[J]. Engineering Fracture Mechanics, 1997, 57(6):701-713.
[143] 张茂, 樊优优, 窦秋芳, 等. 金属薄壁结构剩余强度估算方法研究[J]. 结构强度研究, 2009(4):6-8. ZHANG M, FAN Y Y, DOU Q F, et al.Research on residual strength estimation for metallic thin wall structure[J].Structure and Strength Research, 2009(4):6-8(in Chinese).
[144] OMORI Y, MA L, OKADA H, et al. The T*-integral analysis of aluminum specimens[J]. Theoretical and Applied Mechanics, 1996, 4:89-94.
[145] ATLURI S N, NISHIOKA T, NAKAGAKI M. Incremental path-independent integrals in inelastic and dynamic fracture mechanics[J]. Engineering Fracture Mechanics, 1984, 20(2):209-244.
[146] BRUST F W, NISHIOKA T, ATLURI S N, et al. Further studies on elastic-plastic stable fracture utilizing the T integral[J]. Engineering Fracture Mechanics, 1985, 22(6):1079-1103.
[147] MA L. Crack linkup and residual strength of aircraft structure containing multiple site damage[D].Washington,D.C.:University of Washington,1999.
[148] SWIFT T. Widespread fatigue damage monitoring-issues and concerns[C]//Proceedings of 5th International Conference on Structural Airworthiness of New and Ageing Aircraft, 1993:113-150.
[149] HIJAZI A L, SMITH B L, LACY T E. Linkup strength of 2024-T3 bolted lap joint panels with multiple site damage[J]. Journal of Aircraft, 2004, 41(2):359-364.
[150] SMITH B L, HIJAZI A L, HAQUE A K M, et al. Strength of stiffened 2024-T3 aluminum panels with multiple site damage[J]. Journal of Aircraft, 2001, 38(4):764-768.
[151] SMITH B L, SAVILLE P A, MOUAK A, et al. Strength of 2024-T3 aluminum panels with multiple site damage[J]. Journal of Aircraft, 2000, 37(2):325-331.
[152] DUONG C N, CHEN C C, YU J. An energy approach to the link-up of multiple cracks in thin aluminum alloy sheets[J]. Theoretical and Applied Fracture Mechanics, 2001, 35(2):111-127.
[153] LABEAS G, DIAMANTAKOS J, KERMANIDIS T. Crack link-up for multiple site damage using an energy density approach[J]. Theoretical and Applied Fracture Mechanics, 2005, 43(2):233-243.
[154] WEI R P, LIAO C M, GAO M. A transmission electron microscopy study of constituent-particle-induced corrosion in 7075-T6 and 2024-T3 aluminum alloys[J].Metallurgical and Materials Transactions A, 1998, 29(4):1153-1160.
[155] TURNBULL A. Modelling of environment assisted cracking[J]. Corrosion Science, 1993, 34(6):921-960.
[156] 刘文珽, 李玉海, 等. 飞机结构日历寿命体系评定技术[M]. 北京:航空工业出版社, 2004. LIU WT, LI Y H, et al. Evaluation technology of calendar life system for aircraft structure[M]. Beijing:Aviation Industry Press, 2004(in Chinese).
[157] 贺小帆, 刘文珽, 蒋冬滨. 一种考虑腐蚀影响的飞机结构疲劳试验方法[J]. 北京航空航天大学学报, 2003, 29(1):20-22. HE X F, LIU W T, JIANG D B. Method for fatigue test of aircraft structures considering corrosion influence[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(1):20-22(in Chinese).
[158] 张福泽, 潭卫东, 宋军, 等. 腐蚀温度对飞机疲劳寿命的影响[J]. 航空学报, 2004, 25(5):473-475. ZHANG F Z, TAN W D, SONG J, et al. Effect of corrosion temperature on fatigue life of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(5):473-475(in Chinese).
[159] 李玉海, 贺小帆, 陈群志, 等. 铝合金试件腐蚀深度分布特性及变化规律研究[J]. 北京航空航天大学学报, 2002, 28(1):98-101. LI Y H, HE X F, CHEN Q Z, et al. Investigation on distribution and variable rule for corrosion depth of aluminum alloy specimen[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(1):98-101(in Chinese).
[160] 崔常京, 陈群志, 王逾涯, 等. 模拟某机场大气环境下LY12CZ铝合金的腐蚀行为及其当量关系的建立[J]. 腐蚀科学与防护技术, 2009, 21(3):291-294. CUI C J, CHEN Q Z, WANG Y Y, et al. Corrosion behavior ofLY12CZ aluminum alloy in a laboratory simulated atmospheric environment of one airport[J]. Corrosion Science and Protection Technology, 2009, 21(3):291-294(in Chinese).
[161] 张有宏. 飞机结构的腐蚀损伤及其对寿命的影响[D]. 西安:西北工业大学, 2007. ZHANG Y H. The corrosion damage and its effect on life of aircraft structure[D]. Xi'an:Northwestern Polytechnical University, 2007(in Chinese).
[162] 陈跃良, 金平, 林典雄. 海军飞机结构腐蚀控制及强度评估[M]. 北京:国防工业出版社, 2009. CHEN Y L, JIN P, LIN D X.Corrosion control and strength evaluation of naval aircraft structure[M]. Beijing:National Defense Industry Press, 2009(in Chinese).
[163] WEI R P, LANDES I D. Correlation between sustained-load and fatigue crack growth in high-strength steel[J]. Material Research Standard, 1969, 9(1):25-27.
[164] AUSTEN I M, MCINTYRE P. Corrosion fatigue of high-strength steel in low-pressure hydrogen gas[J]. Metal Science, 1979, 13(7):420-428.
[165] 张福泽. 金属材料日历寿命确定的分散系数和取值[J]. 航空学报, 2016, 37(2):397-403. ZHANG F Z. Scatter factor and values of metallic calendar life[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):397-403(in Chinese).
[166] KONDO Y. Prediction of fatigue crack initiation life based on pit growth[J]. Corrosion, 1989, 45(1):7-11.
[167] SANKARAN K K, PEREZ R, JATA K V. Effects of pitting corrosion on the fatigue behavior of aluminum alloy 7075-T6:Modeling and experimental studies[J]. Materials Science and Engineering A, 2001, 297(1-2):223-229.
[168] 颜光耀, 刘治国, 穆志韬, 等. 多种服役环境下航空铝合金疲劳裂纹扩展行为[J]. 国防科技大学学报, 2019, 41(3):112-118. YAN G Y, LIU Z G, MU Z T, et al. Aviation aluminum crack propagation behavior in multiple service environment[J]. Journal of National University of Defense Technology, 2019, 41(3):112-118(in Chinese).
[169] 邓景辉, 陈平剑, 付裕. 用于预腐蚀航空铝合金材料疲劳寿命分析的腐蚀当量裂纹的抛物线模型[J]. 航空学报, 2018, 39(2):221421. DENG J H, CHEN P J, FU Y.Parabolic model of equivalent crack approach for predicting fatigue life of pre-corroded aluminum alloys[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):221421(in Chinese).
[170] 秦承华. 镍基合金GH4169疲劳小裂纹扩展性能研究[D]. 上海:华东理工大学, 2015. QIN C H. Study on the small fatigue crack growth behavior of Ni-base alloy of GH4169[D]. Shanghai:East China University of Science and Technology, 2015(in Chinese).
[171] DENG G J, TU S T, ZHANG X C, et al. Grain size effect on the small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169[J]. Engineering Fracture Mechanics, 2015, 134:433-450.
[172] 刘洋, 朱祎国, 胡平. 基于多尺度特征应变均匀化计算HCP多晶体塑性[J]. 计算力学学报, 2019, 36(4):536-541. LIU Y, ZHU Y G, HU P. Eigen-strain-based multiscale homogenization application for HCP polycrystalline plasticity[J]. Chinese Journal of Computational Mechanics, 2019, 36(4):536-541(in Chinese).
[173] EISENLOHR P, DIEHL M, LEBENSOHN R A, et al. A spectral method solution to crystal elasto-viscoplasticity at finite strains[J]. International Journal of Plasticity, 2013, 46:37-53.
[174] VAN HOUTTE P, LI S Y, SEEFELDT M, et al. Deformation texture prediction:From the Taylor model to the advanced Lamel model[J]. International Journal of Plasticity, 2005, 21(3):589-624.
[175] KNEZEVIC M, MCCABE R J, LEBENSOHN R A, et al. Integration of self-consistent polycrystal plasticity with dislocation density based hardening laws within an implicit finite element framework:Application to low-symmetry metals[J]. Journal of the Mechanics and Physics of Solids, 2013, 61(10):2034-2046.
[176] KABIRIAN F, KHAN A S, PANDEY A. Negative to positive strain rate sensitivity in 5xxx series aluminum alloys:Experiment and constitutive modeling[J]. International Journal of Plasticity, 2014, 55:232-246.
[177] LEBENSOHN R A. N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform[J]. Acta Materialia, 2001, 49(14):2723-2737.
[178] TANG X S. Scatter of fatigue data owing to material microscopic effects[J]. Science China Physics, Mechanics and Astronomy, 2014, 57(1):90-97.
[179] 李明, 刘扬, 唐雪松. 疲劳裂纹的跨尺度分析[J]. 浙江大学学报(工学版), 2017, 51(3):524-531. LI M, LIU Y, TANG X S. Trans-scale analysis for fatigue crack[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(3):524-531(in Chinese).
[180] SUN B, LI Z X. A multi-scale damage model for fatigue accumulation due to short cracks nucleation andgrowth[J]. Engineering Fracture Mechanics, 2014, 127:280-295.
[181] YE S, ZHANG C C, ZHANG P Y, et al. Fatigue life prediction of nickel-based GH4169 alloy on the basis of a multi-scale crack propagation approach[J]. Engineering Fracture Mechanics, 2018, 199:29-40.
[182] 臧伟锋, 董登科, 张海英. 机身壁板内压载荷强度试验方法研究[J]. 机械强度, 2015, 37(5):972-977. ZANG W F, DONG D K, ZHANG H Y. Research on test method of fuselage panel subjected to internal pressure load[J]. Journal of Mechanical Strength, 2015, 37(5):972-977(in Chinese).
[183] 臧伟锋, 苏少普, 张海英, 等. 机身壁板剪切试验方法研究[J]. 机械强度, 2017, 39(6):1310-1314. ZANG W F, SU S P, ZHANG H Y, et al. Research on test method of fuselage panel subjected to shear load[J]. Journal of Mechanical Strength, 2017, 39(6):1310-1314(in Chinese).
[184] 陈安, 廖江海, 闫文伟, 等. 机身加筋壁板环向裂纹损伤容限试验与分析[J]. 航空工程进展, 2017, 8(1):38-43. CHEN A, LIAO J H, YAN W W, et al. Damage tolerance test and analysis of stiffened fuselage panel with circumferential crack[J]. Advances in Aeronautical Science and Engineering, 2017, 8(1):38-43(in Chinese).
[185] 庞宝才, 董登科, 弓云昭, 等. 襟缝翼可动翼面的随动加载方法研究[J]. 机械科学与技术, 2014, 33(10):1590-1593. PANG B C, DONG D K, GONG Y Z, et al. Study on tracking loading method of locomotory wing for flap and slat[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(10):1590-1593(in Chinese).
[186] 庞宝才, 常文魁, 弓云昭,等. 襟缝翼运动机构支持盒段刚度分析与试验对比研究[J]. 结构强度研究, 2013, 81(3):14-17. PANG B C, CHANG W K, GONG Y Z, et al. Stiffness analysis and the test result comparison research on wing box of flap and slat movement facility[J]. Structure and Strength Research, 2013, 81(3):14-17(in Chinese).
[187] 王彬文, 董登科, 陈莉, 等. 大型水陆两栖飞机起落架强度试验技术[J]. 西安交通大学学报, 2020, 54(7):9-16,157. WANG B W, DONG D K, CHEN L, et al. Strength test technique for large amphibious aircraft landing gear[J]. Journal of Xi'an Jiaotong University, 2020, 54(7):9-16,157(in Chinese).
[188] 何月洲, 赵洪伟. 水陆两栖飞机静强度试验悬空支持技术研究及应用[J]. 工程与试验, 2018, 58(4):98-101,105. HE Y Z, ZHAO H W. Study on suspended support technology in static strength test of full-scale amphibian aircraft and its application[J]. Engineeringand Test, 2018, 58(4):98-101,105(in Chinese).
[189] 王海, 尚红星. 基于弹性体传载介质的水载荷施加技术研究[J]. 工程与试验, 2019, 59(2):55-57. WANG H, SHANG H X. Research on water load loading method based on elastomeric force-transmitting medium in structural strength test[J]. Engineering and Test, 2019, 59(2):55-57(in Chinese).
[190] 斯而健. 民用飞机结构的全尺寸疲劳试验[J]. 民用飞机设计与研究, 2012(1):47-52. SI E J. Full-scale fatigue test of commercial airplane structure[J]. Civil Aircarft Designand Research, 2012(1):47-52(in Chinese).
[191] 王育鹏,田文朋,宋鹏飞,等.民机全机疲劳试验综合加速技术研究与验证[J/OL].航空学报. http://kns.cnki.net/kcms/detail/11.1929.v.20210108.1717.010.html. WANG Y P, TIAN W P, SONG P F, et al.Research and verification of comprehensive acceleration technology for civil aircraft full-scale fatigue test[J/OL]. Acta Aeronautica et Astronautica Sinica. http://kns. cnki.net/kcms/detail/11.1929.v.20210108.1717.010.html (in Chinese).
[192] 何潇, 宁宁. 搅拌摩擦焊接微小缺陷的高频超声检测[J]. 无损探伤, 2020, 44(1):45-48. HE X, NING N. High frequency ultrasound detection of small defects in friction stir welding[J]. Nondestructive Testing Technologying Technology, 2020, 44(1):45-48(in Chinese).
[193] 何潇, 杨鹏飞, 樊俊铃. 飞机二次共固化蒙皮超声检测缺陷信号的识别方法[J]. 无损检测, 2020, 42(4):31-35. HE X, YANG P F, FAN J L. Identification of defect signals of ultrasonic testing of aircraft secondary co-cured skin[J].Nondestructive Testing Technologying, 2020, 42(4):31-35(in Chinese).
[194] 王倩, 杨宇, 肖迎春, 等. 银粉涂层损伤监测系统在裂纹监测中的应用[J]. 无损检测, 2020, 42(4):19-22. WANG Q, YANG Y, XIAO Y C, et al. Application of silver coating damage monitoring system in crack monitoring[J]. Nondestructive Testing, 2020,42(4):19-22(in Chinese).
[195] 王丹, 宁宁, 樊俊铃, 等. 飞机复合材料层板结构原位超声检测技术[J]. 科学技术与工程, 2020, 20(18):7531-7537. WANG D, NING N, FAN J L, et al. In-situ ultrasonic technology for aircraft composite laminates[J]. Science Technology and Engineering, 2020, 20(18):7531-7537(in Chinese).
[196] 宁宁, 王丹, 曲亚林, 等. 碳纤维加筋板的超声相控阵C扫描检测可靠性研究[J]. 南京航空航天大学学报, 2018, 50(1):11-15. NING N, WANG D, QU Y L, et al. Reliability of ultrasonic phased array C-scan testing for carbon fiber composite stiffened panels[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(1):11-15(in Chinese).
[197] 祁小凤,杨宇,康卫平,等.随机载荷谱下基于声发射的耳片接头疲劳裂纹识别方法[J/OL].航空学报. http://kns.cnki.net/kcms/detail/11.1929.V.20201025.1324.006.html. QI X F, YANG Y, KANG W P, et al. Acoustic emission based monitoring of fatigue damage of lug connector under random load spectrum[J/OL]. Acta Aeronautica et Astronautica Sinica. http://kns. cnki.net/kcms/detail/11.1929.V.20201025.1324.006.html (in Chinese).
[198] 杨宇, 王彬文, 吕帅帅, 等. 一种基于深度学习的复合材料结构损伤导波监测方法[J]. 航空科学技术, 2020, 31(7):102-108. YANG Y, WANG B W, LYU S S, et al. A deep-learning-based method for damage identification of composite laminates[J]. Aeronautical Science & Technology, 2020, 31(7):102-108(in Chinese).
[199] 孙侠生, 肖迎春, 白生宝, 等. 民用飞机复合材料结构健康监测技术研究[J]. 航空科学技术, 2020, 31(7):53-63,2. SUN X S, XIAO Y C, BAI S B, et al. Research onstructural health monitoring technology of civil aircraft composites[J]. Aeronautical Science & Technology, 2020, 31(7):53-63,2(in Chinese).
[200] 胡自力, 熊克, 杨红. 基于智能材料结构的几种损伤评价方法[J]. 航空学报, 2002, 23(1):1-5. HU Z L, XIONG K, YANG H. Damage evaluation methods based on smart materials and structures[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(1):1-5(in Chinese).
[201] 张福泽. 飞机疲劳寿命单机监控各节点的判据式和相应的类比计算模型[C]//第16届全国疲劳与断裂学术会议论文集, 2012:16-17, 21-22. ZHANG F Z. Criterion formula and corresponding analogy calculation model of aircraft fatigue life monitoring nodes[C]//Proceedings of the 16th National Conference on Fatigue and Fracture, 2012:16-17,21-22(in Chinese).
[202] 张立新, 钟顺录, 刘小冬, 等. 先进战斗机强度设计技术发展与实践[J]. 航空学报, 2020, 41(6):523480. ZHANG L X, ZHONG S L, LIU X D, et al. Development and application of strength design technology of high performance fighter[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6):523480(in Chinese).
[206] 张福泽. 三维等损伤环境谱的编制原理和方法[J]. 航空学报, 2016, 37(2):381-389. ZHANG F Z. Drawing up principle and method of 3D damage environment spectrum of metallic calendar life[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):381-389(in Chinese).
[207] 张福泽. 金属任意腐蚀损伤量的日历寿命计算模型和曲线[J]. 航空学报, 2017, 38(9):221110. ZHANG F Z. Model and curve of calendar life calculation for metal arbitrary corrosion damage value[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):221110(in Chinese).
[208] 何宇廷, 高潮, 张腾, 等. 飞机结构疲劳/耐久性安全寿命延寿方法[J]. 空军工程大学学报(自然科学版), 2015, 16(6):1-6. HE Y T, GAO C, ZHANG T, et al. On method of fatigue/durability safe life extension of aircraft structure[J]. Journal of Air Force Engineering University (Natural Science Edition), 2015, 16(6):1-6(in Chinese).
[209] 杨晓华, 金平, 陈跃良. 飞机空中使用环境谱的编制[J]. 航空学报, 2008, 29(1):85-90. YANG X H, JIN P, CHEN Y L. Making out aerial environment spectrum of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1):85-90(in Chinese).
Outlines

/