To obtain the negotiability of fuel in the transfer process and the sloshing characteristics under ejection takeoff excitation, a numerical simulation of a multi-compartments tank is carried out using the finite pointset method. The results show that this method can capture more accurate characteristics of the free surface. It is found that the degree of fuel sloshing is different under different fuel load. When there is less fuel in the tank, the free surface changes drastically and fiercely, leading to a wide range of movement for the center of gravity. The opening area of the compartment frame is an important factor affecting the negotiability. When it varies within ±10%, the flow resistance and energy dissipation of fuel change obviously. The internal relationship between the frame opening area and sloshing suppression are revealed to a certain degree. This study can provide important reference for multi-compartments frame design and theoretical study of fluid sloshing damping.
[1] RANSAU S R, HANSEN E W M. Numerical simulations of sloshing in rectangular tanks[C]//Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering, 2006.
[2] RAFIEE A, PISTANI F, THIAGARAJAN K J C M. Study of liquid sloshing:numerical and experimental approach[J]. Computational Mechanics:Solids, Fluids, Fracture Transport Phenomena and Variational Methods, 2011, 47(1):65-75.
[3] ZOU C F, WANG D Y. A simplified mechanical model with fluid-structure interaction for rectangular tank sloshing under horizontal excitation[J]. Advances in Mechanical Engineering, 2015, 7(5):1-16.
[4] 李青, 王天舒, 马兴瑞. 充液航天器液体晃动和液固耦合动力学的研究与应用[J]. 力学进展, 2012, 42(4):472-481. LI Q, WANG T S, MA X R. Reviews on liquid sloshing dynamics and liquid-structure coupling dynamics in liquid-filled spacecrafts[J]. Advances in Mechanics, 2012, 42(4):472-481(in Chinese).
[5] DELORME L, COLAGROSSI A, SOUTO-IGLESIAS A, et al. A set of canonical problems in sloshing, part I:Pressure field in forced roll-comparison between experimental results and SPH[J]. Ocean Engineering, 2009, 36(2):168-178.
[6] SOUTO-IGLESIAS A, BOTIA-VERA E, MARTíN A, et al. A set of canonical problems in sloshing. Part 0:Experimental setup and data processing[J]. Ocean Engineering, 2011, 38(16):1823-30.
[7] 杨瑞. 基于ALE有限元法的飞机整体油箱燃油晃动特性研究[D]. 哈尔滨:哈尔滨工业大学, 2016. YANG R. Research of fuel sloshing in aircraft integral tanks by the ALE finite element method[D]. Harbin:Harbin Institute of Technology, 2016(in Chinese).
[8] 杨尚霖, 陈晓峰, 杜发喜, 等. 机动行为下飞机油箱箱晃动流固耦合动力学分析[J]. 航空学报, 2019, 40(3):222471. YANG S L, CHEN X F, DU F X, et al. Dynamic analysis of fluid-structure interaction on aircraft fuel tank sloshing during maneuver[J]. Acta Aeronautics et Astronautica Sinica. 2019, 40(3):222471(in Chinese).
[9] ZHAO Y, CHEN H C. Numerical simulation of 3D sloshing flow in partially filled LNG tank using a coupled level-set and volume-of-fluid method[J]. Ocean Engineering, 2015, 104(1):10-30.
[10] LIU D, TANG W, WANG J, et al. Modelling of liquid sloshing using CLSVOF method and very large eddy simulation[J]. Ocean Engineering, 2017, 129(1):160-176.
[11] 于强, 王天舒. 航天器贮箱内液体大幅晃动动力学分析[J]. 中国科学:物理学力学天文学, 2019, 49(2):127-134. YU Q, WANG T S. Dynamics analysis of liquid sloshing in spacecraft storage tank[J]. Chinese Science:Physics Mechanics Astronomy, 2019, 49(2):127-134(in Chinese).
[12] 刘谋斌, 宗智,常建忠, 等. 光滑粒子动力学方法的发展与应用[J]. 力学进展, 2011, 41(2):219-236. LIU M B, ZONG Z, CHANG J Z, et al. Developments and applications of smoothed particle hydro-dynamics[J]. Advances in Mechanics, 2011, 41(2):219-236(in Chinese).
[13] 郑兴, 段文洋. 二阶核近似SPH精度分析及其在粘性流场中的应用[J]. 哈尔滨工程大学学报, 2011, 32(7):841-847. ZHENG X, DUAN W Y. Accuracy analysis of SPH with second order kernel approximation and its application to viscosity flow simulation[J]. Journal of Harbin Engineering University, 2011, 32(7):841-847(in Chinese).
[14] 任金莲, 欧阳洁, 蒋涛. 修正SPH方法在自由表面模拟中的应用[J]. 计算力学学报, 2012, 29(1):69-73. REN J L, OUYANG J, JIANG T, et al. Application of the modified SPH method to the simulation of free surface[J]. Chinese Journal of Computational Mechanics, 2012, 29(1):69-73(in Chinese).
[15] 董添文, 黄兴元, 江顺亮, 等. 两种SPH算法在模拟不可压缩流中的比较[J]. 南昌大学学报, 2011, 33(1):69-73. DONG T W, HUANG X Y, JIANG S L, et al. Comparisons of two different SPH algorithms in simulating incompressible flow[J]. Journal of Nanchang University, 2011, 33(1):69-73(in Chinese).
[16] XU F, ZHAO Y, YAN R, et al. Multidimensional discontinuous SPH method and its application to metal penetration analysis[J]. International Journal for Numerical Methods in Engineering, 2013, 93(11):1125-1146.
[17] 胡德安. 光滑粒子法及其与有限元耦合算法的研究进展[J]. 力学学报, 2013, 45(5):639-652. HU D A. Research progress of smooth particle method and its coupling algorithm with Finite Element Method[J]. Journal of Mechanics. 2013, 45(5):639-652(in Chinese).
[18] SHAO J R, LI H Q, LIU G R, et al. An improved SPH method for modeling liquid sloshing dynamics[J]. Computers & Structures, 2012, 100-101:18-26.
[19] SINGAL V, BAJAJ J, AWALGAONKAR N, et al. CFD analysis of a kerosene fuel tank to reduce liquid sloshing[J]. Procedia Engineering, 2014, 69:1365-1371.
[20] OÑATE E, IDELSOHN S, ZIENKIEWICZ O, et al. A finite point method in computational mechanics:applications to convective transport and fluid flow[J]. International Journal for Numerical Methods in Engineering, 1996, 39(22):3839-3866.
[21] 刘戈, 林焰, 管官, 等. LNG独立C型液舱晃荡特性试验研究[J]. 大连理工大学学报, 2017, 57(5):467-475. LIU G, LIN Y, GUAN G, et al. Experimental study of sloshing pattern on LNG independent C type tank[J]. Journal of Dalian University of Technology, 2017, 57(5):467-475(in Chinese).