Carrier-based aircraft is the main weapon in aircraft carrier. In order to meet the requirements of taking off, landing and parking, the design of the carrier aircraft must be centered around "characteristic structures" such as the landing gear system, arresting hook system, and wing folding system. The impact energy of the advanced carrier aircraft is more than 6 times that that of the land-based aircraft, and the horizontal load brought by interception is 15 times higher than that of the land-based aircraft. Therefore, high load on the "characteristic structures" presents higher requirements on the strength design. This paper details the design work around the "characteristic structures" and "characteristic loads" of the carrier aircraft, including calculation of "characteristic loads", i.e. landing gear load, barrage load and folding load; strength design and test verification of "characteristic structures" including dynamic simulation of the landing gear system, barrage system and wing folding system, static/fatigue strength analysis, flutter analysis of folding wing surface, and post-test analysis of the impact of drag force on the body structure strength; analysis of dynamic response of landing on ship and influence of the combined action of landing load and barrage load on the strength of the aircraft structure; discussion of the test verification methods reflecting the strength characteristics of the "characteristic structures" of the carrier aircraft. The above research results have been successfully applied to the design of advanced carrier aircraft.
CAO Qikai
,
WANG Yan
,
YAO Niankui
,
HE Gang
,
CHEN Zhongming
,
ZHANG Guijiang
,
TIAN Zhiliang
,
WU Xinyue
. Development and application of strength design technology of advanced carrier-based aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021
, 42(8)
: 525793
-525793
.
DOI: 10.7527/S1000-6893.2021.25793
[1] 马世强. 起飞方式对舰载机结构重量的影响[J].舰载武器, 2007(5):73-78. MA S Q. Effect of takeoff mode on the weight of shipboard plane[J].Shipborne Weapons, 2007(5):73-78(in Chinese).
[2] 马界祥, 段琼, 王丑丑. 使用环境对舰载飞机重量的影响研究[J].装备环境工程, 2017, 14(7):56-60. MA J X, DUAN Q, WANG C C. Research on the influence of use environment on the weight of shipborne aircraft[J].Equipment Environmental Engineering, 2017, 14(7):56-60(in Chinese).
[3] 中国人民解放军总装备部. 军用飞机结构完整性大纲:GJB775A-2012[S]. 北京:中国人民解放军总装备部, 2012. General Armament Department of the PLA. Military aircraft structural integrity program:GJB775A-2012[S]. Beijing:General Armament Department of the PLA, 2012(in Chinese).
[4] United States Air Force. Aircraft structural integrity program (ASIP):MIL-STD-1530A[S]. ASC/ENOI, 1975.
[5] 中国人民解放军总装备部.军用飞机结构强度规范:GJB67A-2008[S]. 北京:中国人民解放军总装备部,2008. General Armament Department of the PLA. Military air plane structural strength specification for structural strength of military aircraft:GJB67A-2008[S]. Beijing:General Armament Department of the PLA, 2008(in Chinese).
[6] United States Air Force. Airplane strength and rigidity, general:MIL-A-8860B[S]. 1987.
[7] 离子鱼. 从舰载固定翼战机的技术和应用看中国舰载战斗机的发展方向[J].舰载武器, 2010(11):22-35. LI Z Y. Development tendency of and prospects for shipborne fighter[J].Shipborne Weapons, 2010(11):22-35(in Chinese).
[8] 吴家鸣. 航母舰载机起降方式特点分析及全球现役航母简介[J].广东造船, 2011(5):45-48. WU J M. Analysis on takeoff and landing characteristic of carrier-borne aircraft and introduction on global active duty aircraft carrier[J].Guangdong Shipbuilding, 2011(5):45-48(in Chinese).
[9] 聂宏, 彭一明, 魏小辉, 等. 舰载飞机着舰拦阻动力学研究综述[J].航空学报, 2014,35(1):1-12. NIE H, PENG Y M, WEI X H, et al. Overview of carrier-based aircraft arrested deck-landing dynamics[J].Acta Aeronautica et Astronautica Sinica, 2014,35(1):1-12(in Chinese).
[10] 冯蕴雯, 刘思宏, 薛小锋, 等. 基于实测值的舰载机着舰下沉速度影响性分析[J].航空学报, 2015, 36(11):3578-3585. FENG Y W, LIU S H, XUE X F, et al. Sinking velocity impact analysis of carrier-based aircraft based on test data[J].Acta Aeronautica et Astronautica Sinica, 2015,36(11):3578-3585(in Chinese).
[11] 周胜明. 航母甲板运动对舰载机着舰影响仿真分析[J].飞机设计, 2012, 32(6):28-32. ZHOU S M. Simulation analysis on influence of carrier deck motion on carrier-based aircraft landing[J].Aircraft Design, 2012,32(6):28-32(in Chinese).
[12] 段萍萍. 舰载飞机着舰过程动力学性能分析[D]. 南京:南京航空航天大学, 2012:3-7. DUAN P P. Investigation on dynamic performance analysis for carrier-based aircraft during landing process[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012:3-7(in Chinese).
[13] 柳刚. 飞机着陆拦阻装置的设计方法研究[D]. 南京:南京航空航天大学, 2006:2-3. LIU G. The research on techniques to design the arresting gear of aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2006:2-3(in Chinese).
[14] 金长江, 洪冠新. 舰载机弹射起飞及拦阻着舰动力学问题[J].航空学报, 1990(12):B535-B542. JIN C J, HONG G X. Dynamic problems of carrier aircraft catapult launching and arrest landing[J].Acta Aeronautica et Astronautica Sinica, 1990(12):B535-B542(in Chinese).
[15] 李新飞. 舰载机起降关键技术仿真研究[D]. 哈尔滨:哈尔滨工程大学, 2012:5-28. LI X F. Simulation of key technology of launch and land for carrier-based aircraft[D]. Harbin:Harbin Engineering University, 2012:5-28(in Chinese).
[16] 王陶. 舰载机着舰结构动力学建模、计算及响应优化[D]. 南京:南京航空航天大学. 2017:5-10. WANG T. Structure dynamics modeling, calculation and response optimization of carrier-based aircraft landing[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:5-10(in Chinese).
[17] 张奇. 拦阻钩挂索冲击动力学及试验方法研究[D]. 南京:南京航空航天大学, 2018:1-2. ZHANG Q. Research on impact dynamics and test method of arresting hook[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018:1-2(in Chinese).
[18] 陆沛文. 舰载机拦阻钩挂拦阻索失效动力学仿真计算与分析[D]. 南京:南京航空航天大学, 2018:3-10. LU P W. Dynamic simulation and analysis for arresting process of carried-based aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018:3-10(in Chinese).
[19] 何磊. 歼-15舰载机起落架动力学仿真分析与试验研究[D]. 沈阳:沈阳航空航天大学, 2017:3-7. HE L. Dynamic simulation analysis and experimental study on flying landing gear of j-15 carrier[D]. Shenyang:Shenyang Aerospace University, 2017:3-7(in Chinese).
[20] 姚念奎, 隋福成, 王成波. 舰载机的自由飞行钩住情况[J].飞机设计, 2011, 31(6):10-15 YAO N K, SUI F C, WANG C B. Free flight engagement condition of carrier-based aircraft[J].Aircraft Design, 2011, 31(6):10-15(in Chinese).