The prominent viscous effect of vehicles flying at a high speed and altitude leads to the necessity of precise skin friction prediction for the key aerodynamic performance of the vehicles. However, the skin friction obtained from numerical calculation, currently the main approach to skin friction prediction, has a large gap from that of the tunnel test in the high Mach number laminar flow. The key factors influencing friction numerical prediction precision such as numerical dissipation of the space scheme and wall temperature boundary conditions were studied. With typical characteristics of high speed vehicles, a cone with a sharp nose and a delta wing were investigated considering the tunnel test results in the study. The results showed that less numerical dissipation results in more accurate skin friction calculation, and that closing the entropy fix in regions near the wall in the boundary layer helps to improve the calculation precision of skin friction. Additionally, the wall temperature boundary conditions also have an important effect on the skin friction calculation in the high Mach number flow. Finally, the requirements for high-precision skin friction numerical prediction are proposed based on the analysis results and engineering demands.
FAN Yuehua
,
DUAN Yee
,
ZHOU Naizhen
,
YANG Pan
. Friction numerical calculation precision in high Mach number laminar flow[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021
, 42(9)
: 625737
-625737
.
DOI: 10.7527/S1000-6893.2021.25737
[1] 张益荣, 张毅锋, 解静, 等. 典型高超声速翼身组合体粘性干扰效应模型研究[J]. 空气动力学学报, 2017, 35(2):186-191. ZHANG Y R, ZHANG Y F, XIE J, et al. Study of viscous interaction effect model for typical hypersonic wing-body figuration[J]. Acta Aerodynamica Sinica, 2017, 35(2):186-191(in Chinese).
[2] 史云龙. 高超声速风洞模型表面摩阻测量技术研究[D]. 绵阳:中国空气动力研究与发展中心, 2015:8-10. SHI Y L. The research of model skin friction measurement technology in hypersonic wind tunnel[D].Mianyang:China Aerodynamics Research and Development Center, 2015:8-10(in Chinese).
[3] 马洪强, 高贺, 毕志献. 高超声速飞行器相关的摩擦阻力直接测量技术[J]. 实验流体力学, 2011, 25(4):83-88. MA H Q, GAO H, BI Z X. Direct measurement of skin friction for hypersonic flight vehicle[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4):83-88(in Chinese).
[4] 吕治国, 李国君, 赵荣娟, 等. 激波风洞高超声速摩阻直接测量技术研究[J]. 实验流体力学, 2013, 27(6):81-85. LV Z G, LI G J, ZHAO R J, et al. Direct measurement of skin friction at hypersonic shock tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6):81-85(in Chinese).
[5] BUI T, PIPITONE B, KRAKE K. In-flight capability for evaluating skin-friction gages and other near-wall flow sensors:AIAA-2003-0741[R]. Reston:AIAA, 2003.
[6] 唐志共, 张益荣, 陈坚强, 等. 更准确、更精确、更高效:高超声速流动数值模拟研究进展[J]. 航空学报, 2015, 36(1):120-134. TANG Z G, ZHANG Y R, CHEN J Q, et al. More fidelity, more accurate, more efficient-Progress on numerical simulations for hypersonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):120-134(in Chinese).
[7] 周铸, 黄江涛, 黄勇, 等. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报, 2017, 38(3):020891. ZHOU Z, HUANG J T, HUANG Y, et al. CFD technology in aeronautic engineering field:Applications, challenges and development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):020891(in Chinese).
[8] 周丹, 禹建军, 阎超. 层流平板摩擦阻力的数值计算[J]. 北京航空航天大学学报, 2007, 33(6):663-667. ZHOU D, YU J J, YAN C. Numerical calculation of laminar flat plate skin friction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(6):663-667(in Chinese).
[9] 郑世超. 高精度格式在高超声速流动数值模拟中的验证与确认研究[D]. 长沙:国防科学技术大学, 2016:42-49. ZHENG S C. Verification and validation study of high order schemes in numerical simulations of hypersonic flows[D]. Changsha:National University of Defense Technology, 2016:42-49(in Chinese).
[10] 张培红, 张耀冰, 周桂宇, 等. 面向混合网格高精度阻力预测的熵修正方法[J]. 航空学报, 2018, 39(9):122030. ZHANG P H, ZHANG Y B, ZHOU G Y, et al. Entropy correction method for high accuracy drag prediction with mixed grids[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):122030(in Chinese).
[11] MERITT R J, SCHETZ J A, MARINEAU E C, et al. Direct measurements of skin friction at AEDC hypervelocity wind tunnel 9:AIAA-2015-1914[R]. Reston:AIAA, 2015.
[12] 陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J/OL]. 中国科学:技术科学, (2021-04-28)[2021-05-17]. https://kns.cnki.net/kcms/detail/11.5844.TH.20210-428.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese national numericalwindtunnel project[J/OL]. Scientia Sinica Technologica, (2021-04-28)[2021-05-17]. https://kns.cnki.net/kcms/detail/11.5844.TH.20210428.0914.006.html (in Chinese).
[13] TORO E F, SPRUCE M, SPEARES W. Restoration of the contact surface in the HLL-Riemann solver[J]. Shock Waves, 1994, 4(1):25-34.
[14] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2):357-372.
[15] LIOU M S, STEFFEN C J. A new flux splitting scheme[J]. Journal of Computational Physics, 1993, 107(1):23-39.
[16] LIOU M S. A sequel to AUSM:AUSM+[J]. Journal of Computational Physics, 1996, 129(2):364-382.
[17] VAN LEER B. Flux vector splitting for Euler equations[J]. Lecture Notes in Physics, 1982, 170:507-512.
[18] VAN LEER B. Towards the ultimate conservative difference scheme.V.A second-order sequel toGodunov's method[J]. Journal of Computational Physics, 1979, 32(1):101-136.
[19] 陈坚强, 张益荣, 郭勇颜. 高超声速流动数值模拟方法及应用[M]. 北京:科学出版社, 2019:43-44. CHEN J Q, ZHANG Y R, GUO Y Y. Numerical simulation methods and applications of hypersonic flow[M]. Beijing:Science Press, 2019:43-44(in Chinese).
[20] 阎超. 计算流体力学方法及应用[M]. 北京:北京航空航天大学出版社, 2006:83-84. YAN C.Methods and applications of computational fluid dynamics[M]. Beijing:Beihang University Press, 2006:83-84(in Chinese).
[21] MVLLER B. Simple improvements of an upwind TVD scheme for hypersonic flow[C]//9th Computational Fluid Dynamics Conference. Reston:AIAA, 1989.
[22] YEE H C, KLOPFER G H, MONTAGNÉ J L. High-resolution shock-capturing schemes for inviscid and viscous hypersonic flows[J]. Journal of Computational Physics, 1990, 88(1):31-61.
[23] ANDERSON J D. 高超声速和高温气体动力学[M]. 杨永, 李栋, 译. 北京:航空工业出版社, 2013:235-252. ANDERSON J D.Hypersonic and high-temperature gas dynamics[M]. YANG Y, LI D, translated. Beijing:Aviation Industry Press, 2013:235-252.