Articles

High-efficiency electrical arc machining of integral shrouded blisk using grouped electrode

  • JIA Yuchao ,
  • CHI Guanxin ,
  • ZHANG Kun ,
  • ZHANG Jia ,
  • WANG Zhenlong
Expand
  • 1. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China;
    2. Capital Aerospace Machinery Co., Ltd., Beijing 100076, China

Received date: 2021-03-30

  Revised date: 2021-04-12

  Online published: 2021-06-01

Supported by

Application of Technology Research and Development Program of Heilongjiang Province (GA16A404)

Abstract

Integral shrouded blisks provide excellent performance for aviation turbine engines and turbo pumps in liquid rocket engines. However, manufacture of these blisks is much more difficult, making it a bottleneck for the production of engines. Electrochemical machining and electric discharge machining are usually adopted for the machining of these parts. The main drawback is poor machining efficiency, resulting in higher cost. For this reason, an electrical arc machining method that uses a grouped electrode to perform parallel roughing of multiple channels under the conditions of high current and long pulse width discharge is proposed. The requirements for grouped electrode design are discussed based on the principle of arc machining. The design workflow of grouped electrode with internal flushing structure is then proposed. The shunt structure of the internal flushing channel is optimized using computational fluid dynamics simulations. The actual performance of the proposed method is verified by a trial production, and the indicators such as material removal rate and electrode wear rate are analyzed. The results show that compared with the previous electrical arc machining method using singular electrode, the material removal rate using the grouped electrode was increased by 62.9%. The total time consumption was reduced to 8.7% of that of the traditional electric discharge machining, benefited from the increase in material removal rate and the reduction in auxiliary time.

Cite this article

JIA Yuchao , CHI Guanxin , ZHANG Kun , ZHANG Jia , WANG Zhenlong . High-efficiency electrical arc machining of integral shrouded blisk using grouped electrode[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(4) : 525605 -525605 . DOI: 10.7527/S1000-6893.2021.25605

References

[1] 刘辰, 徐家文, 赵建社, 等. 三元流闭式叶轮组合电加工技术研究Ⅲ:数控电火花精加工关键技术[J]. 航空学报, 2010, 31(6):1299-1304. LIU C, XU J W, ZHAO J S, et al. Research of combined electrical machining of 3D-flow closed impellers Ⅲ-Key techniques of numerically controlled electron discharge machining for precision work[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1299-1304(in Chinese).
[2] 高航, 袁业民, 陈建锋, 等. 航空发动机整体叶盘磨料水射流开坯加工技术研究进展[J]. 航空学报, 2020, 41(2):623319. GAO H, YUAN Y M, CHEN J F, et al. Research progress of abrasive water jet blanking technology for aero-engine integral blade[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):623319(in Chinese).
[3] 梁为. 提高闭式整体叶盘电火花加工效率相关技术研究[D]. 上海:上海交通大学, 2017:140. LIANG W. Research on efficiency improving technology in edm process of integral shrouded blisk[D]. Shanghai:Shanghai Jiao Tong University, 2017:140(in Chinese).
[4] GONZÁLEZ-BARRIO H, CALLEJA-OCHOA A, LAMIKIZ A, et al. Manufacturing processes of integral blade rotors for turbomachinery, processes and new approaches[J]. Applied Sciences, 2020, 10(9):3063.
[5] 周旭娇, 赵建社, 褚辉生, 等. 整体叶环成组电极电火花高效加工技术研究[J]. 中国机械工程, 2016, 27(18):2453-2457, 2466. ZHOU X J, ZHAO J S, CHU H S, et al. Research on high efficiency EDM process of integral bling with grouped electrodes[J]. China Mechanical Engineering, 2016, 27(18):2453-2457, 2466(in Chinese).
[6] FU Y Z, GAO H, WANG X P, et al. Machining the integral impeller and blisk of aero-engines:A review of surface finishing and strengthening technologies[J]. Chinese Journal of Mechanical Engineering, 2017, 30(3):528-543.
[7] XU Z Y, WANG Y D. Electrochemical machining of complex components of aero-engines:Developments, trends, and technological advances[J]. Chinese Journal of Aeronautics, 2021, 34(2):28-53.
[8] KLOCKE F, KLINK A, VESELOVAC D, et al. Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes[J]. CIRP Annals, 2014, 63(2):703-726.
[9] 沈玉琢, 李鹏, 杨立光, 等. 大型闭式整体叶轮电火花加工技术研究[J]. 电加工与模具, 2020(3):11-14, 68. SHEN Y Z, LI P, YANG L G, et al. Research on EDM technology for large closed integral impeller[J]. Electromachining & Mould, 2020(3):11-14, 68(in Chinese).
[10] AYESTA I, IZQUIERDO B, SANCHEZ J A, et al. Optimum electrode path generation for EDM manufacturing of aerospace components[J]. Robotics and Computer-Integrated Manufacturing, 2016, 37:273-281.
[11] LIU X, KANG X M, XI X C, et al. Electrode feed path planning for multi-axis EDM of integral shrouded impeller[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(5-8):1697-1706.
[12] KANG X M, LIANG W, ZHAO W S, et al. Feeding with perturbations in the EDM process of an integral shrouded blisk[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(9-12):3951-3957.
[13] CHEN H, XI X C, ZHAO W S. Angular movement ratio planning of the rotary axes for shrouded blisks multi-axis EDM[J]. Procedia CIRP, 2016, 42:206-209.
[14] 张昆, 张晓阳, 钟晓红, 等. 大栅距带叶冠涡轮盘电火花加工工艺优化设计[J]. 电加工与模具, 2014(6):53-55. ZHANG K, ZHANG X Y, ZHONG X H, et al. Electrical discharge machining process optimization for large lattice spacing turbine blisk with shrouded[J]. Electromachining & Mould, 2014(6):53-55(in Chinese).
[15] 叶军, 朱宁, 吴国兴, 等. 数控高效放电铣削加工技术[J]. 电加工与模具, 2010(4):60-63. YE J, ZHU N, WU G X, et al. CNC high-performance discharge milling technology[J]. Electromachining & Mould, 2010(4):60-63(in Chinese).
[16] 张发旺. 基于流体动力断弧的高速电弧放电加工机理研究[D]. 上海:上海交通大学, 2017:87-98. ZHANG F W. Mechanism study of blasting erosion arc machining based on hydrodynamic arc breaking mechanism[D]. Shanghai:Shanghai Jiao Tong University, 2017:87-98(in Chinese).
[17] LI X Z, ZHOU J P, WANG K D, et al. Arc characteristics in short electrical arc high-efficiency milling for GH4169[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2020, 234(12):1526-1537.
[18] KOU Z J, HAN F Z, WANG G S. Research on machining Ti6Al4V by high-speed electric arc milling with breaking arcs via mechanical-hydrodynamic coupling forces[J]. Journal of Materials Processing Technology, 2019, 271:499-509.
[19] DING S, YUANZ R, LI Z, et al. CNC electrical discharge rough machining of turbine blades[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2006, 220(7):1027-1034.
[20] 何国健, 顾琳, 董海洪, 等. 三元流叶轮的电弧铣削与机械铣削组合加工[J]. 航空制造技术, 2019, 62(11):39-46. HE G J, GU L, DONG H H, et al. Combined machining of three-dimensional flow impeller by EAM milling and CNC milling[J]. Aeronautical Manufacturing Technology, 2019, 62(11):39-46(in Chinese).
[21] 宋国新, 耿雪松, 朱红敏. 复杂流道构件组合放电加工技术研究[J]. 电加工与模具, 2017(1):56-59, 68. SONG G X, GENG X S, ZHU H M. Study on combined discharge machining technology of complex channel components[J]. Electromachining & Mould, 2017(1):56-59, 68(in Chinese).
[22] 贾雨超, 迟关心, 王振龙, 等. 叶盘流道五轴高效复合放电加工机床及其数控系统设计[J]. 电加工与模具, 2020(S1):19-23. JIA Y C, CHI G X, WANG Z L, et al. Design of five-axis hybrid electrical-discharge machine tool and it's NC system for high-efficiency machining of turbine blisk[J]. Electromachining & Mould, 2020(S1):19-23(in Chinese).
[23] WANG C L, CHEN J P, GU L, et al. Blasting erosion arc machining of turbine blisk flow channel with laminated electrode[J]. Procedia CIRP, 2016, 42:317-321.
[24] JIA Y C, CHI G X, SHEN Y, et al. Electrode design using revolving entity extraction for high-efficiency electric discharge machining of integral shrouded blisk[J]. Chinese Journal of Aeronautics, 2021, 34(6):178-187.
Outlines

/