Adaptive decoupling control for a class of spinning rockets considering actuator dynamics

  • SHI Zhongjiao ,
  • ZHU Huajie ,
  • ZHAO Liangyu ,
  • LIU Zhijie
Expand
  • 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China;
    3. School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China

Received date: 2020-12-06

  Revised date: 2021-01-25

  Online published: 2021-06-01

Supported by

National Natural Science Foundation of China (62103052, 12072027, 11532002)

Abstract

An adaptive decoupling control method considering aerodynamic uncertainty and actuator dynamics is proposed to solve the strong coupling problem caused by aerodynamic, inertial and control cross-coupling.Considering a type of canard controlled spinning rockets, an acceleration dynamic model considering actuator dynamics is established under the non-rolling body frame.Using the model reference adaptive control method as the basic framework, the tracking error integral is extended to the controlled system to improve the tracking performance of the closed-loop system.The error signal between the input and output of the actuator is fed back into the reference model to realize the decoupling between the pitch and yaw channels.Theoretical analysis and numerical simulation show the effectiveness of the proposed method.The simulation results show that the adaptive decoupling controller developed in our study can ensure stability of the closed-loop system and realize the decoupling between the pitch and yaw channels.

Cite this article

SHI Zhongjiao , ZHU Huajie , ZHAO Liangyu , LIU Zhijie . Adaptive decoupling control for a class of spinning rockets considering actuator dynamics[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(3) : 325068 -325068 . DOI: 10.7527/S1000-6893.2021.25068

References

[1] 谢浩怡, 赵良玉, 石忠佼.旋转弹解耦控制方法综述[J].战术导弹技术, 2015(1):73-78. XIE H Y, ZHAO L Y, SHI Z J.Review on decoupling control methods for spinning missiles[J].Tactical Missile Technology, 2015(1):73-78(in Chinese).
[2] 杨树兴.陆军多管火箭武器的发展与思考[J].兵工学报, 2016, 37(7):1299-1305. YANG S X.Progress and key points for guidance of multiple launch rocket Systems[J].Acta Armamentarii, 2016, 37(7):1299-1305(in Chinese).
[3] YAN X Y, YANG S X, ZHANG C.Coning motion of spinning missiles induced by the rate loop[J].Journal of Guidance, Control, and Dynamics, 2010, 33(5):1490-1499.
[4] YAN X Y, YANG S X, XIONG F F.Stability limits of spinning missiles with attitude autopilot[J].Journal of Guidance, Control, and Dynamics, 2011, 34(1):278-283.
[5] 陈罗婧, 刘莉, 于剑桥.双通道控制旋转导弹自动驾驶仪解耦控制研究[J].北京理工大学学报, 2008, 28(1):11-14. CHEN L J, LIU L, YU J Q.Decoupling control of a double-channel control rolling missile Autopilot[J].Transactions of Beijing Institute of Technology, 2008, 28(1):11-14(in Chinese).
[6] 闫晓勇, 张成, 杨树兴.一类滚转弹的补偿解耦方法[J].弹道学报, 2009, 21(4):17-20, 25. YAN X Y, ZHANG C, YANG S X.Decoupling technique for a class of rolling Missile[J].Journal of Ballistics, 2009, 21(4):17-20, 25(in Chinese).
[7] 袁天保, 刘新建, 秦子增.自旋弹道导弹动力学与控制[J].宇航学报, 2006, 27(2):217-221. YUAN T B, LIU X J, QIN Z Z.Dynamic and control of spinning ballistic missile[J].Journal of Astronautics, 2006, 27(2):217-221(in Chinese).
[8] 李克勇.旋转导弹制导控制与稳定性问题研究[D].北京:北京理工大学, 2014. LI K Y.Guidance, control, and stability of spinning missiles[D].Beijing:Beijing Institute of Technology, 2014(in Chinese).
[9] 陈伟, 孙传杰, 冯高鹏, 等.基于滚动时域优化的旋转弹解耦控制器设计[J].北京航空航天大学学报, 2018, 44(4):717-724. CHEN W, SUN C J, FENG G P, et al.Design of decoupling controller for spinning missile based on receding horizon optimization[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4):717-724(in Chinese).
[10] TIPÀN S, THEODOULIS S, THAI S, et al.Nonlinear dynamic inversion flight control design for guided projectiles[J].Journal of Guidance, Control, and Dynamics, 2020, 43(5):975-980.
[11] SÉVE F, THEODOULIS S.Design of an H∞ gain-scheduled guidance scheme for a guided projectile[J].Journal of Guidance, Control, and Dynamics, 2019, 42(11):2399-2417.
[12] ZHAO L Y, SHI Z J, ZHU Y Q.Acceleration autopilot for a guided spinning rocket via adaptive output feedback[J].Aerospace Science and Technology, 2018, 77:573-584.
[13] SHI Z J, ZHAO L Y, LIU Z J.Variational method based robust adaptive control for a guided spinning rocket[J].Chinese Journal of Aeronautics, 2021, 34(3):164-175.
[14] 董旺, 齐瑞云, 姜斌.空天飞行器直接力/气动力复合容错控制[J].航空学报, 2020, 41(11):623850. DONG W, QI R Y, JIANG B.Composite fault tolerant control for aerospace vehicles with swing engines and aerodynamic fins[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(11):623850(in Chinese).
[15] 郭建国, 鲁宁波, 周军.高超声速飞行器有限时间耦合模糊控制[J].航空学报, 2020, 41(11):623838. GUO J G, LU N B, ZHOU J.Fuzzy control of finite time attitude coupling in hypersonic vehicles[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(11):623838(in Chinese).
[16] 杨树兴, 赵良玉, 闫晓勇.旋转弹动态稳定性理论[M].北京:国防工业出版社, 2014. YANG S X, ZHAO L Y, YAN X Y.Dynamic stability of spinning missiles[M].Beijing:National Defense Industry Press, 2014(in Chinese).
[17] GRUENWALD B C, YUCELEN T, MUSE J A, et al.Computing stability limits for adaptive control laws with high-order actuator dynamics[J].Automatica, 2019, 101:409-416.
[18] SÈVE F, THEODOULIS S, WERNERT P, et al.Flight dynamics modeling of dual-spin guided projectiles[J].IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4):1625-1641.
[19] KHALIL H.Nonlinear systems[M].3rd ed.Upper Saddle River:Prentice Hall, 2002.
[20] LAVRETSKY E, WISE K A.Robust and adaptive control[M].London:Springer London, 2013.
[21] 陈威, 徐浩军, 王小龙, 等.基于鲁棒伺服LQR的结冰飞机纵向控制律重构方法[J].航空学报, 2017, 38(1):120129. CHEN W, XU H J, WANG X L, et al.Reconfigurable control methods of icing aircraft longitudinal motion based on robust servo LQR[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(1):120129(in Chinese).
Outlines

/