Fluid Mechanics and Flight Mechanics

Influence of slotting on inclined plate at different impact distances on impact noise of supersonic jet

  • QI Longzhou ,
  • ZHAO Kun ,
  • FENG Heying ,
  • ZHANG Junlong ,
  • QIN Chen
Expand
  • 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Key Laboratory of Aerodynamic Noise Control, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    3. Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan 411201, China

Received date: 2021-04-23

  Revised date: 2021-06-03

  Online published: 2021-05-26

Supported by

Open Funding from State Key Laboratory of Aerodynamics (SKLA201920101);Open Funding from Key Laboratory of Aerodynamic Noise Control (ANCL20200306)

Abstract

The noise radiation of the aircraft carrier seriously threatens the physical and mental health of the ground personality and the safety of the precision instruments on the aircraft carrier, and this problem can be simplified as a supersonic jet impact inclined plate problem. This paper studies the influence of the surface groove structure on the impact noise characteristics with high frequency Particle Image Velocimetry (PIV) and far field noise measurement to explore the noise reduction mechanism of the groove structure and determine the nozzle-deflector impact distance. The results show that the slotted surface of the inclined plate can effectively reduce the impact jet noise, and the noise reduction effect is closely related to the impact distance. If the impact distance is 3-5 times the nozzle diameter (L/d=3-5), the noise reduction effect of the slotted inclined plate is the best at L/d=3.8. The slotted inclined plate can effectively reduce the noise of supersonic impinging jet mainly because of its good inhibitory effect on the screech tone. When the Mach number is 1.12, the main sound source area of the screech tone is located at the rear edge of the fourth shock cells for a circular nozzle with an outlet diameter of d=56 mm, which is consistent with the current general knowledge. With a proper impact distance, the groove structure can affect the shock cells, thereby effectively suppressing the screech tone.

Cite this article

QI Longzhou , ZHAO Kun , FENG Heying , ZHANG Junlong , QIN Chen . Influence of slotting on inclined plate at different impact distances on impact noise of supersonic jet[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(8) : 125712 -125712 . DOI: 10.7527/S1000-6893.2021.25712

References

[1] POWELL A, UMEDA Y, ISHII R. Observations of the oscillation modes of choked circular jets[J]. The Journal of the Acoustical Society of America, 1992, 92(5): 2823-2836.
[2] GOJON R, BOGEY C, MARSDEN O. Investigation of tone generation in ideally expanded supersonic planar impinging jets using large-eddy simulation[J]. Journal of Fluid Mechanics, 2016, 808: 90-115.
[3] AKAMINE M, NAKANISHI Y, OKAMOTO K, et al. Acoustic phenomena from correctly expanded supersonic jet impinging on inclined plate[J]. AIAA Journal, 2015, 53(7): 2061-2067.
[4] 汪洋海, 李晓东. 超声速喷流啸声的控制方法[J]. 推进技术, 2007, 28(2): 211-215. WANG Y H, LI X D. Control methods for supersonic jet screech tones[J]. Journal of Propulsion Technology, 2007, 28(2): 211-215 (in Chinese).
[5] BALAKRISHNAN P, SRINIVASAN K. Impinging jet noise reduction using non-circular jets[J]. Applied Acoustics, 2019, 143: 19-30.
[6] CHEN Z, WU J H, REN A D, et al. Energy transfer mechanism of supersonic jet noise through rectangular nozzles[J]. Noise Control Engineering Journal, 2017, 65(2): 110-120.
[7] 张俊龙, 雷红胜, 田昊, 等. 亚声速矩形射流的噪声辐射特性和声源分布[J]. 航空学报, 2020, 41(2): 123386. ZHANG J L, LEI H S, TIAN H, et al. Noise radiation characteristics and source distribution of subsonic rectangular jet[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 123386 (in Chinese).
[8] HIEJIMA T. A factor involved in efficient breakdown of supersonic streamwise vortices[J]. Physics of Fluids, 2015, 27(3): 034103.
[9] UZUN A, HUSSAINI M Y. Simulation of noise generation in near-nozzle region of a chevron nozzle jet[J]. AIAA Journal, 2009, 47(8):1793-1810.
[10] 李晓东, 徐希海, 高军辉, 等. 喷流噪声研究进展与展望[J]. 空气动力学学报, 2018, 36(3): 398-409. LI X D, XU X H, GAO J H, et al. Progress and prospect on jet noise study[J]. Acta Aerodynamica Sinica, 2018, 36(3): 398-409 (in Chinese).
[11] XIA H, TUCKER P G. Numerical simulation of single-stream jets from a serrated nozzle[J]. Flow, Turbulence and Combustion, 2012, 88(1-2): 3-18.
[12] HUMPHREY N J, EDGINGTON-MITCHELL D. The effect of low lobe count chevron nozzles on supersonic jet screech[J]. International Journal of Aeroacoustics, 2016, 15(3): 294-311.
[13] 何敬玉, 邵万仁, 许影博, 等. V形槽喷管在分开式排气系统中的降噪实验[J]. 航空动力学报, 2015, 30(2): 324-330. HE J Y, SHAO W R, XU Y B, et al. Experiment of noise reduction in separate flow system using chevron nozzles[J]. Journal of Aerospace Power, 2015, 30(2): 324-330 (in Chinese).
[14] 单勇, 张靖周, 邵万仁, 等. 冠状喷口抑制涡扇发动机喷流噪声试验和数值研究[J]. 航空学报, 2013, 34(5): 1046-1056. SHAN Y, ZHANG J Z, SHAO W R, et al. Experimental and numerical research on jet noise suppression with chevron nozzle for turbofan engines[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1046-1056 (in Chinese).
[15] DHAMANEKAR A, SRINIVASAN K. Effect of impingement surface roughness on the noise from impinging jets[J]. Physics of Fluids, 2014, 26(3): 036101.
[16] CLARK I, BAKER D, ALEXANDER W N, et al. Experimental and theoretical analysis of bio-inspired trailing edge noise control devices: AIAA-2016-3020[R]. Reston: AIAA, 2016.
[17] TSUTSUMI S, NONOMURA T, FUJII K, et al. Mechanism of acoustic radiation from Supersonic Jets Impinging to Inclined Flat Plates[J]. The Journal of the Acoustical Society of America, 2011, 130(4): 2511.
[18] KOSCHATZKY V, MOORE P D, WESTERWEEL J, et al. High speed PIV applied to aerodynamic noise investigation[J]. Experiments in Fluids, 2011, 50(4): 863-876.
[19] NONOMURA T, HONDA H, NAGATA Y, et al. Plate-angle effects on acoustic waves from supersonic jets impinging on inclined plates[J]. AIAA Journal, 2016, 54(3): 816-827.
[20] RAMAN G. Advances in understanding supersonic jet screech: Review and perspective[J]. Progress in Aerospace Sciences, 1998, 34(1-2): 45-106.
[21] UMEDA Y, ISHII R. On the sound sources of screech tones radiated from choked circular jets[J]. The Journal of the Acoustical Society of America, 2001, 110(4): 1845-1858.
[22] DAUPTAIN A, CUENOT B, GICQUEL L Y M. Large eddy simulation of stable supersonic jet impinging on flat plate[J]. AIAA Journal, 2010, 48(10): 2325-2338.
[23] 何枫, 谢峻石, 姚朝晖. 超声速欠膨胀冲击射流的数值模拟[J]. 推进技术, 2002, 23(2): 96-99. HE F, XIE J S, YAO Z H. Numerical simulation under-expanded supersonic impinging jet[J]. Journal of Propulsion Technology, 2002, 23(2): 96-99 (in Chinese).
[24] POWELL A. On the mechanism of choked jet noise[J]. Proceedings of the Physical Society Section B, 1953, 66(12): 1039-1056.
Outlines

/