Icing will destroy the original aerodynamic shape of the aircraft, and the flow field on the aircraft surface shows strong unsteady, nonlinear and random characteristics under icing conditions. We analyze the coupling characteristics of aerodynamics / flight dynamics of background aircraft under icing conditions, proposing a two-way coupling solution strategy, and developing an integrated numerical computing platform for the unsteady flow solver and flight dynamics simulation software. The effectiveness of the coupling algorithm is verified through standard examples, and the numerical simulation program is capable of simulation of unsteady flow with dynamic attitude. On this basis, the calculation and analysis of the coupling characteristics of background aircraft aerodynamics/flight dynamics with the ice accretion on the leading edge of the wing are conducted. The results show that the influence of the unsteady effect under icing conditions is reflected in the high angle of attack stage. Meanwhile, the unsteady characteristics brought by separation bubble shedding and re-incidence will cause strong pulsation of aerodynamic forces, possibly leading to aircraft loss of control. The method described in this paper lays a foundation for exploring the influence of the coupling characteristics of uncontrollable motion, flow field and aerodynamic characteristics on flight safety, exhibiting a good engineering application prospect.
WU Qiang
,
XU Haojun
,
WEI Yang
,
PEI Binbin
,
XUE Yuan
. Aerodynamics/flight dynamics coupling characteristics of aircraft under icing conditions[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022
, 43(8)
: 125566
-125566
.
DOI: 10.7527/S1000-6893.2021.25566
[1] Boeing. Statistical summary of commercial jet airplane accidents[R]. Washington,D.C.:Aviation Safety,Boeing Commercial Airplanes, 2015: 24.
[2] CAO Y H, WU Z L, SU Y, et al. Aircraft flight characteristics in icing conditions[J]. Progress in Aerospace Sciences, 2015, 74: 62-80.
[3] MILLER R, RIBBENS W. Detection of the loss of elevator effectiveness due to aircraft icing[C]//37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999.
[4] WEI Y, XU H J, XUE Y,et al.Quantitative assessment and visulaization of flight risk induced by coupled multi-facor under icing conditions[J]. Chinese Journal of Aeronautics, 2020,173(8):52-67.
[5] BRAGG M, HUTCHISON T, MERRET J. Effect of ice accretion on aircraft flight dynamics[C]//38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000.
[6] LAMPTON A, VALASEK J. Prediction of icing effects on the coupled dynamic response of light airplanes[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3): 656-673.
[7] GUO L L, ZHU M H, NIE B W, et al. Initial virtual flight test for a dynamically similar aircraft model with control augmentation system[J]. Chinese Journal of Aeronautics, 2017, 30(2): 602-610.
[8] MURRI D G, NGUYE L T, GRAFTON S B. Wind tunnel free-flight investigation of a model of a forward swept-wing fighter configuration: NASA TP-2230[R]. Washington, D.C.: NASA, 1984.
[9] SALAS M D. Digital flight: the last CFD aeronautical grand challenge[J]. Journal of Scientific Computing, 2006, 28(2-3): 479-505.
[10] MORTON S, MCDANIEL D, SEARS D, et al. Rigid, maneuvering, and aeroelastic results for kestrel-A CREATE simulation tool[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010.
[11] DEAN J P, CLIFTON J D, BODKIN D J, et al. High resolution CFD simulations of maneuvering aircraft using the CREATE/AV-Kestrel solver[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition. Reston: AIAA, 2011.
[12] ALLAN M, BADCOCK K, RICHARDS B. CFD based simulation of longitudinal flight mechanics with control[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
[13] 杨小亮. 飞行器多自由度耦合摇滚运动数值模拟研究[D]. 长沙: 国防科学技术大学, 2012. YANG X L. Numerical investigation of aircraft rock in multiple degrees of freedom[D]. Changsha: National University of Defense Technology, 2012 (in Chinese).
[14] 黄宇, 阎超, 席柯, 等. 基于数值虚拟飞行技术的飞行器动态特性分析[J]. 航空学报, 2016, 37(8): 2525-2538. HUANG Y, YAN C, XI K, et al. Analysis of flying vehicle’s dynamic characteristics based on numerical virtual flight technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2525-2538 (in Chinese).
[15] 杨云军, 崔尔杰, 周伟江. 细长三角翼滚转/侧滑耦合运动的数值研究[J]. 航空学报, 2007, 28(1): 14-19. YANG Y J, CUI E J, ZHOU W J. Numerical research on roll and sideslip coupling motions about a slender delta-wing[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1): 14-19 (in Chinese).
[16] 张来平, 马戎, 常兴华, 等. 虚拟飞行中气动、运动和控制耦合的数值模拟技术[J]. 力学进展, 2014, 44(1):376-417. ZHANG L P, MA R, CHANG X H, et al. Review of aerodynamics/kinematics/flight-control coupling methods in virtual flight simulations[J]. Advances in Mechanics, 2014, 44(1):376-417(in Chinese).
[17] 马戎. 基于动态混合网格的气动/运动耦合一体化计算方法研究[D]. 绵阳: 中国空气动力研究与发展中心, 2015. MA R. Numerical methods for aerodynamic/kinematic coupling problems based on dynamic hybrid grids[D]. Mianyang: China Aerodynamics Research and Development Center, 2015 (in Chinese).
[18] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372.
[19] Van Leer B. Towards the ultimate conservation difference scheme I: The quest of monotonicity[J]. Lecture Notes in Physics, 1978, 18:163-168.
[20] VAN LEER B. Towards the ultimate conservative difference scheme V: A second-order sequel to Godunov’s method[J]. Journal of Computational Physics, 1979, 32(1): 101-136.
[21] YOON S, JAMESON A. An LU-SSOR scheme for the Euler and Navier-Stokes equations[C]//25th AIAA Aerospace Sciences Meeting. Reston: AIAA, 1987.
[22] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]//30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992.
[23] 李立. 机动飞行数值模拟关键技术及初步验证[J]. 飞行力学, 2017, 35(1): 89-92. LI L. Key technologies and preliminary validation for numerical simulation of maneuver flight[J]. Flight Dynamics, 2017, 35(1): 89-92 (in Chinese).
[24] LANDON R H. NACA0012 oscillatory and transient pitching:AGARD Report 702[R]. Washington, D.C.:AGARD, 1982.
[25] BATINA J T. Unsteady Euler airfoil solutions using unstructured dynamic meshes[J]. AIAA Journal, 1990, 28(8): 1381-1388.
[26] ADDY H E. Ice accretions and icing effects for modern airfoils: NASA/TP-2000-210031[R]. Washington, D.C.: NASA, 2000.
[27] ANSYS. ANSYS ICEM CFD user manual[S]. Canonsbury:ANSYS Inc, 2012.
[28] 魏扬, 李杰, 李明, 等. 结冰条件下大型飞机翼面分离流场结构及空气动力学特性研究[J]. 空军工程大学学报(自然科学版), 2020, 21(5): 9-16, 22. WEI Y, LI J, LI M, et al. Research on the airflow separation structure and aerodynamic characteristics of large aircraft under condition of ice formation on wings[J]. Journal of Air Force Engineering University (Natural Science Edition), 2020, 21(5): 9-16, 22 (in Chinese).