Article

Aircraft life extension based on incremental assessment: Method and application

  • GUAN Yu ,
  • CHEN Liang ,
  • CAO Qikai
Expand
  • 1. Department of Comprehensive Strength, AVIC Shenyang Aircraft Design & Research Institute, Shenyang 110035, China;
    2. Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024, China;
    3. Chief Designer's Office, AVIC Shenyang Aircraft Design and Research Institute, Shenyang 110035, China

Received date: 2021-04-15

  Revised date: 2021-05-08

  Online published: 2021-05-24

Supported by

Equipment Development Department Project

Abstract

In order to maximize the life potential of aging aircraft, an aircraft life extension method based on increment assessment is proposed and applied. Taking the life increment assessment as the main way, we study the basic point of life extension, renew the structure and get the life increment. By using the equivalent flying hours which reflect the severity of the aircraft as the base point of life extension, the ageing aircraft has been scientifically treated. To carry out the deep demolition and damage assessment of 4 kinds of aircraft from different status to life, master the key parts of fatigue, and establish the base point of structural repair. The technical system of extended service life of aircraft is established, which is based on the durability repair of weak parts of fatigue and the additive manufacturing repair in key parts and high precision damage detection in concealed areas. At the lower weight cost, the original fatigue quality of the body structure is greatly improved, the accumulated damage is "cleared", the structure state "unified", all the hidden troubles and faults affecting the flight safety are eliminated, and the structure of the body is "re-updated". Then, drawing on the structural repair and life extension of the aircraft, the life increment of the aircraft is verified and a complete technical system is formed through the full-size fatigue test system,

Cite this article

GUAN Yu , CHEN Liang , CAO Qikai . Aircraft life extension based on incremental assessment: Method and application[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(8) : 525782 -525782 . DOI: 10.7527/S1000-6893.2021.25782

References

[1] 刘文珽, 王智, 隋福成. 单机寿命监控技术指南[M]. 北京:国防工业出版社, 2010. LIU W T, WANG Z, SUI F C. Monitoring technigues guide of aircraft life[M]. Beijing:National Defense Industry Press, 2010(in Chinese).
[2] 黄季墀, 隋福成. 引进先进战斗机延寿取得重大突破的主要技术途径:耐久性修理是重新赋予飞机生命的修理[J].飞机设计, 2010, 30(1):1-4. HUANG J C, SUI F C. The main technology approach that foreign aircraft life extension obtained important develop-the durability repair that confer afresh life of aircraft[J].Aircraft Design, 2010, 30(1):1-4(in Chinese).
[3] 张福泽. 已飞飞机原寿命的疲劳分散系数[J].航空学报, 2013, 34(5):1108-1113. ZHANG F Z. Fatigue scatter factor of flown aircraft's original life[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1108-1113(in Chinese).
[4] 王智, 刘文珽, 王磊. 单机结构疲劳分散系数研究[J].机械强度, 2009, 31(1):150-154. WANG Z, LIU W T, WANG L. Study on fatigue scatter factor of individual aircraft structure[J].Journal of Mechanical Strength, 2009, 31(1):150-154(in Chinese).
[5] 薛军, 朱青云, 王智, 等. 单机寿命监控应用技术研究[C]//第十四届全国疲劳与断裂学术会议论文集, 2008:705-709. XUE J, ZHU Q Y, WANG Z, et al. Research on application technology of single machine life monitoring[C]//Proceedings of the 14th Fatigue and Fracture Conference, 2008:705-709(in Chinese)
[6] SHOALES G. Procedures for aircraft structural teardown analysis:development of A best practices handbook[M]//ICAF 2009, Bridging the Gap between Theory and Operational Practice. Dordrecht:Springer Netherlands, 2009:330-353.
[7] 王智, 宋海平. 论飞机结构的拆毁检查[C]//航空安全与装备维修技术学术研讨会论文集, 2014:443-448. WANG Z, SONG H P.Demolition inspection of aircraft structures[C]//Proceedings of the Symposium on Aviation Safety and Enquipment Maintenance Technology, 2014:443-448(in Chinese).
[8] 刘小冬, 刘文珽. 飞机结构经济维修方案优化技术[J].北京航空航天大学学报, 2000, 26(5):561-564. LIU X D, LIU W T. Optimization of aircraft structural economic maintenance program[J].Journal of Beijing University of Aeronautics and Astronautics, 2000, 26(5):561-564(in Chinese).
[9] 刘小冬, 刘文珽. 结构使用寿命评定的功能失效概率控制方法[J].北京航空航天大学学报, 2002, 28(1):105-108. LIU X D, LIU W T. Structural function failure probability control method for service life estimation[J].Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(1):105-108(in Chinese).
[10] 吕漫丽, 孙灵芳. 多传感器信息融合技术[J].自动化技术与应用, 2008, 27(2):79-82. LV M L, SUN L F. Multi-sensor information fusion technology[J].Techniques of Automation and Applications, 2008, 27(2):79-82(in Chinese).
[11] 丁文静. 多传感器信息融合目标识别算法研究[D]. 无锡:江南大学, 2016. DING W J. Research on multi-sensor information fusion target recognition algorithms[D]. Wuxi:Jiangnan University, 2016(in Chinese).
[12] 简小刚, 贾鸿盛, 石来德. 多传感器信息融合技术的研究进展[J].中国工程机械学报, 2009, 7(2):227-232. JIAN X G, JIA H S, SHI L D. Advances on multi-sensor information fusion technologies[J].Chinese Journal of Construction Machinery, 2009, 7(2):227-232(in Chinese).
[13] 王希望, 刘淑霞, 王亚辉. 信号处理和虚拟仪器技术在无损检测中的应用[J].无损检测, 2005, 27(11):601-603. WANG X W, LIU S X, WANG Y H. Application of signal processing and virtual instrument technique to nondestructive testing[J].Nondestructive Testing Technologying, 2005, 27(11):601-603(in Chinese).
[14] 石仲川, 刘德鑫, 张晓云, 等. 冷喷涂技术的研究现状及在航空工业领域内的应用[J].材料导报, 2012, 26(17):70-74. SHI Z C, LIU D X, ZHANG X Y, et al. Research of cold gas dynamic spray technology and its application in aviation industry[J].Materials Review, 2012, 26(17):70-74(in Chinese).
[15] 李文亚, 张冬冬, 黄春杰, 等. 冷喷涂技术在增材制造和修复再制造领域的应用研究现状[J].焊接, 2016(4):2-8,73. LI W Y, ZHANG D D, HUANG C J, et al. State of the art of cold spraying additive manufacturing and remanufacturing[J].Welding & Joining, 2016(4):2-8,73(in Chinese).
[16] GNANASEKARAN B, LIU G R, FU Y, et al. A Smoothed Particle Hydrodynamics (SPH) procedure for simulating cold spray process-A study using particles[J].Surface and Coatings Technology, 2019, 377:124812.
[17] 宋凯强, 丛大龙, 何庆兵, 等. 先进冷喷涂技术的应用及展望[J].装备环境工程, 2019, 16(8):65-69. SONG K Q, CONG D L, HE Q B, et al. Application and prospect of advanced cold spray technology[J].Equipment Environmental Engineering, 2019, 16(8):65-69(in Chinese).
[18] USAF. Materials deposition cold spray:MIL-STD-3021[S].2015.
[19] YIN S, CAVALIERE P, ALDWELL B, et al. Cold spray additive manufacturing and repair:Fundamentals and applications[J].Additive Manufacturing, 2018, 21:628-650.
[20] JONES R, BANKER A, MATTHEWS N, et al. Aircraft sustainment and repair[M]. Oxford:Butterworth-Heinemann, 2018:852-854.
[21] JONES R, MOLENT L, BARTER S, et al. Supersonic particle deposition as a means for enhancing the structural integrity of aircraft structures[J].International Journal of Fatigue, 2014, 68:260-268.
[22] 石仲川, 王长亮, 汤智慧. 冷喷涂技术在轻合金再制造工程领域的研究现状[J].材料导报, 2014, 28(3):97-99,106. SHI Z C, WANG C L, TANG Z H. Research progress on cold spray in light alloy remanufacturing engineering[J].Materials Review, 2014, 28(3):97-99,106(in Chinese).
[23] 石仲川, 汤智慧, 王长亮. Д-30发动机中央传动机匣表面涂层的冷喷涂修复[J].航空维修与工程, 2014(6):47-48. SHI Z C, TANG Z H, WANG C L. Cold spray repair for coating of main gearbox in Д-30 engine[J].Aviation Maintenance & Engineering, 2014(6):47-48(in Chinese).
[24] 军用飞机结构强度规范.第6部分:重复载荷、耐久性和损伤容限:GJB 67.6A-2008[S].北京:中国人民解放军总装备部, 2008. Military airplane strength specification repeated loads, durability and damage tolerance:GJB67.6A-2008[S]. Beijing:General Armament Department of the Chinese People's Liberation Army, 2008(in Chinese).
[25] 高潮, 何宇廷, 侯波, 等. 飞机结构疲劳寿命分散系数研究[J].机械强度, 2016, 38(5):1076-1081. GAO C, HE Y T, HOU B, et al. On fatigue life scatter factor for the aircraft structure[J].Journal of Mechanical Strength, 2016, 38(5):1076-1081(in Chinese).
[26] 褚武扬. 断裂与环境断裂[M]. 北京:科学出版社, 2000. CHU W Y. Fracture and environmental fracture[M]. Beijing:Science Press, 2000(in Chinese).
[27] 陈小明, 宋仁国. 7000系铝合金应力腐蚀开裂的研究进展[J].腐蚀科学与防护技术, 2010, 22(2):120-123. CHEN X M, SONG R G. Progress in research on stress corrosion cracking of 7000 series aluminum alloys[J].Corrosion Science and Protection Technology, 2010, 22(2):120-123(in Chinese).
[28] 李安敏, 王晖, 郭长青, 等. 7xxx系铝合金应力腐蚀的控制[J].材料导报, 2015, 29(17):84-88. LI A M, WANG H, GUO C Q, et al. Control on stress corrosion of 7xxx aluminum alloys[J].Materials Review, 2015, 29(17):84-88(in Chinese).
[29] 卢志明, 石来民, 朱沈瑾, 等. 激光喷丸与机械喷丸对304不锈钢应力腐蚀性能的影响[J].材料热处理学报, 2015, 36(6):169-173. LU Z M, SHI L M, ZHU S J, et al. Effect of laser peening and shot peening on stress corrosion sensitivity of 304 stainless steel[J].Transactions of Materials and Heat Treatment, 2015, 36(6):169-173(in Chinese).
[30] 葛茂忠, 张永康, 项建云. AZ31B镁合金激光冲击强化及抗应力腐蚀研究[J].中国激光, 2010, 37(11):2925. GE M Z, ZHANG Y K, XIANG J Y. Research on laser shock strengthening and stress corrosion cracking resistance of AZ31B magnesium alloy[J].Chinese Journal of Lasers, 2010, 37(11):2925(in Chinese).
[31] 白生宝, 肖迎春, 刘马宝, 等. 智能涂层传感器监测裂纹的工程适用性[J].无损检测, 2015, 37(1):42-44. BAI S B, XIAO Y C, LIU M B, et al. Engineering applicability of monitoring crack by smart coatings sensor[J].Nondestructive Testing Technologying, 2015, 37(1):42-44(in Chinese).
[32] 张立新, 钟顺录, 刘小冬, 等. 先进战斗机强度设计技术发展与实践[J].航空学报, 2020, 41(6):523480. ZHANG L X, ZHONG S L, LIU X D, et al. Development and application of strength design technology of high performance fighter[J].Acta Aeronautica et Astronautica Sinica, 2020, 41(6):523480(in Chinese).
Outlines

/