Special Topic of NNW Progress and Application

Advances in numerical simulation of wind-blown sand

  • WANG Ping ,
  • ZHENG Xiaojing
Expand
  • Key Laboratory of Mechanics on Disaster and Environment in Western China, The Ministry of Education, Center for Particle-laden Turbulence, Lanzhou University, Lanzhou 730000, China

Received date: 2021-03-30

  Revised date: 2021-05-10

  Online published: 2021-05-24

Supported by

National Numerical Windtunnel Project; National Natural Science Foundation of China (92052202,12072138)

Abstract

Wind-blown sand in the atmospheric surface layer is a typical two-phase flow characterized by the splashing process as sand particles impacting the erodible surface bed, multi-field coupling among turbulent wind, electrostatic field and charged sand particles, and multiscale and trans-scale problem. Therefore, accurate simulation and prediction of wind-blown sand has been very challenging. In this paper, we review the research progresses obtained in the past 30 years, including mainly simulation of multi-field coupling of wind-blown sand and scale-coupled model of aeolian geomorphology based on Reynolds-Averaged Navier-Stokes (RANS) equations, and simulation of sand movement based on Large Eddy Simulation (LES) and high Reynolds number wall turbulence. Shortcomings of existing numerical simulation methods for aeolian sand movement and the directions worthy of further research are also discussed.

Cite this article

WANG Ping , ZHENG Xiaojing . Advances in numerical simulation of wind-blown sand[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(9) : 625767 -625767 . DOI: 10.7527/S1000-6893.2021.25767

References

[1] ZHENG X J. Mechanics of wind-blown sand movement[M]. Berlin/Heidelberg:Springer, 2009.
[2] BAGNOLD R A. The physics of blown sand and desert dunes[M]. Dordrecht:Springer Netherlands, 1974.
[3] DUFFA G. Ablative thermal protection systems modeling[M].Reston:AIAA, 2013.
[4] COLGLAZIER W. Sustainable development agenda:2030[J]. Science, 2015, 349(6252):1048-1050.
[5] 全国重要生态系统保护和修复重大工程总体规划(2021-2035年)[EB/OL]. (2020-06-12)[2021-04-02]. http://www.mnr.gov.cn/dt/ywbb/202006/t20200612_25258-56.html. Master plan for major projects of national important ecosystem protection and restoration (2021-2035)[EB/OL]. (2020-06-12)[2021-04-02]. http://www.mnr.gov.cn/dt/ywbb/202006/t20200612_2525856.html (in Chinese).
[6] ZHENG X J. Electrification of wind-blown sand:Recent advances and key issues[J]. The European Physical Journal E, 2013, 36(12):138.
[7] BALACHANDAR S, EATON J K. Turbulent dispersed multiphase flow[J]. Annual Review of Fluid Mechanics, 2010, 42(1):111-133.
[8] KENNEDY D. What don't we know?[J]. Science, 2005, 309(5731):75.
[9] OWEN P R. Saltation of uniform grains in air[J]. Journal of Fluid Mechanics, 1964, 20(2):225-242.
[10] WHITE B R, GREELEY R, IVERSEN J D, et al. Estimated grain saltation in a Martian atmosphere[J]. Journal of Geophysical Research:Atmospheres, 1976, 81(32):5643-5650.
[11] WHITE B R. Soil transport by winds on Mars[J]. Journal of Geophysical Research:Atmospheres, 1979, 84(B9):4643-4651.
[12] ANDERSON R S, HALLET B. Sediment transport by wind:Toward a general model[J]. Geological Society of America Bulletin, 1986, 97(5):523-535.
[13] 刘大有, 董飞. 风沙二相流动的三流体模型[J]. 应用数学和力学, 1996, 17(7):613-624. LIU D Y, DONG F. Athree-fluid model of the sand-driven flow[J]. Applied Mathematics and Mechanics, 1996, 17(7):613-624(in Chinese).
[14] UNGAR J E, HAFF P K. Steady state saltation in air[J]. Sedimentology, 1987, 34(2):289-299.
[15] WERNER B T. A steady-state model of wind-blown sand transport[J]. The Journal of Geology, 1990, 98(1):1-17.
[16] ANDERSON R S, HAFF P K. Simulation of eolian saltation[J]. Science, 1988, 241(4867):820-823.
[17] BAUER B O, DAVIDSON-ARNOTT R G D, ORDSTROM N K F, et al. Indeterminacy in Aeolian sediment transport across beaches[J]. Journal of Coastal Research, 1996, 12(3):641-653.
[18] BAAS A C W, SHERMAN D J. Spatiotemporal variability of aeolian sand transport in a coastal dune environment[J]. Journal of Coastal Research, 2006, 225:1198-1205.
[19] ELLIS J T, SHERMAN D J, FARRELL E J, et al. Temporal and spatial variability of aeolian sand transport:Implications for field measurements[J]. Aeolian Research, 2012, 3(4):379-387.
[20] SHERMAN D J, HOUSER C, ELLIS J T, et al. Characterization of aeolian streamers using time-average videography[J]. Journal of Coastal Research, 2013, 65(sp2):1331-1336.
[21] KLINE S J, REYNOLDS W C, SCHRAUB F A, et al. The structure of turbulent boundary layers[J]. Journal of Fluid Mechanics, 1967, 30(4):741-773.
[22] ROBINSON S K. Coherent motions in the turbulent boundary layer[J]. Annual Review of Fluid Mechanics, 1991, 23(1):601-639.
[23] 杨强, 袁先旭, 陈坚强, 等. 不可压壁湍流中基本相干结构[J]. 空气动力学学报, 2020, 38(1):83-99. YANG Q, YUAN X X, CHEN J Q, et al. On elementary coherent structures in incompressible wall-bounded turbulence[J]. Acta Aerodynamica Sinica, 2020, 38(1):83-99(in Chinese).
[24] KIM K C, ADRIAN R J. Very large-scale motion in the outer layer[J]. Physics of Fluids, 1999, 11(2):417-422.
[25] HUTCHINS N, MARUSIC I. Evidence of very long meandering features in the logarithmic region ofturbulent boundary layers[J]. Journal of Fluid Mechanics, 2007, 579:1-28.
[26] WANG G H, ZHENG X J. Verylarge scale motions in the atmospheric surface layer:A field investigation[J]. Journal of Fluid Mechanics, 2016, 802:464-489.
[27] ZHENG X J, ZHANG J H, WANG G H, et al. Investigation on very large scale motions (VLSMs) and their influence in a dust storm[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(2):306-314.
[28] WANG G H, ZHENG X J, TAO J J. Very large scale motions and PM10 concentration in a high-Re boundary layer[J]. Physics of Fluids, 2017, 29(6):061701.
[29] BAAS A C W. Formation and behavior of aeolian streamers[J]. Journal of Geophysical Research:Atmospheres, 2005, 110(F3):F03011.
[30] JACKSON D W T, MCCLOSKEY J. Preliminary results from a field investigation of aeolian sand transport using high resolution wind and transport measurements[J]. Geophysical Research Letters, 1997, 24(2):163-166.
[31] RASMUSSEN K R, SØRENSEN M. Aeolian mass transport near the saltation threshold[J]. Earth Surface Processes and Landforms, 1999, 24(5):413-422.
[32] CARNEIRO M V, RASMUSSEN K R, HERRMANN H J. Bursts in discontinuous Aeolian saltation[J]. Scientific Reports, 2015, 5:11109.
[33] DIPLAS P, DANCEY C L, CELIK A O, et al. The role of impulse on the initiation of particle movement under turbulent flow conditions[J]. Science, 2008, 322(5902):717-720.
[34] VALYRAKIS M, DIPLAS P, DANCEY C L, et al. Role of instantaneous force magnitude and duration on particle entrainment[J]. Journal of Geophysical Research:Earth Surface, 2010, 115(F2):F02006.
[35] ZHENG X J, HE L H, WU J J. Vertical profiles of mass flux for windblown sand movement at steady state[J]. Journal of Geophysical Research:Solid Earth, 2004, 109(B1):B01106.
[36] ANDERSON R S, HAFF P K. Wind modification and bed response during saltation of sand in air[M]//Aeolian Grain Transport 1. Vienna:Springer, 1991:21-51.
[37] MCEWAN I K, WILLETTS B B. Numerical model of the saltation cloud[M]//Aeolian Grain Transport 1. Vienna:Springer, 1991:53-66.
[38] MCEWAN I K, WILLETTS B B. Adaptation of the near-surface wind to the development of sand transport[J]. Journal of Fluid Mechanics, 1993, 252:99-115.
[39] WILLETTS B B, RICE M A. Collisions in aeolian saltation[J]. Acta Mechanica, 1986, 63(1-4):255-265.
[40] WILLETTS B B, RICE M A. Collisions of quartz grains with a sand bed:The influence of incident angle[J]. Earth Surface Processes and Landforms, 1989, 14(8):719-730.
[41] SHAO Y P, LI A. Numerical modelling of saltation in the atmospheric surface layer[J]. Boundary-Layer Meteorology, 1999, 91(2):199-225.
[42] SHAO Y, RAUPACH M R. The overshoot and equilibration of saltation[J]. Journal of Geophysical Research:Atmospheres, 1992, 97(D18):20559-20564.
[43] ALMEIDA M P, ANDRADE J S, HERRMANN H J. Aeolian transport layer[J]. Physical Review Letters, 2006, 96(1):018001.
[44] ALMEIDA M P, PARTELI E J R, ANDRADE J S, et al. Giant saltation on Mars[J].Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(17):6222-6226.
[45] HUANG H J, BO T L, ZHENG X J. Numerical modeling of wind-blown sand on Mars[J]. The European Physical Journal E, 2014, 37(9):36.
[46] ZHENG X J, FU L T, BO T L. Incident velocity and incident angle of saltating sand grains on Mars[J]. New Journal of Physics, 2013, 15(4):043014.
[47] SCHMIDT D S, SCHMIDT R A, DENT J D. Electrostatic force on saltating sand[J]. Journal of Geophysical Research:Atmospheres, 1998, 103(D8):8997-9001.
[48] ZHENG X J, HUANG N, ZHOU Y H. Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D10):4322.
[49] BO T L, ZHENG X J. A field observational study of electrification within a dust storm inMinqin, China[J]. Aeolian Research, 2013, 8:39-47.
[50] ZHENG X J, HUANG N, ZHOU Y. The effect of electrostatic force on the evolution of sand saltation cloud[J]. The European Physical Journal E, 2006, 19(2):129-138.
[51] KOK J F, RENNO N O. Electrostatics in wind-blown sand[J]. Physical Review Letters, 2008, 100:014501.
[52] HU W W, XIE L, ZHENG X J. Simulation of the electrification of wind-blown sand[J]. The European Physical Journal E, 2012, 35(3):1-8.
[53] CARNEIRO M V, PÄHTZ T, HERRMANN H J. Jump at the onset of saltation[J]. Physical Review Letters, 2011, 107(9):098001.
[54] DURÁN O, ANDREOTTI B, CLAUDIN P. Numerical simulation of turbulent sediment transport, from bed load to saltation[J]. Physics of Fluids, 2012, 24(10):103306.
[55] PÄHTZ T, DURÁN O. Fluid forces or impacts:What governs the entrainment of soil particles in sediment transport mediated by a Newtonian fluid?[J]. Physical Review Fluids, 2017, 2(7):074303.
[56] PÄHTZ T, DURÁN O. The cessation threshold ofnonsuspended sediment transport across aeolian and fluvial environments[J]. Journal of Geophysical Research:Earth Surface, 2018, 123(8):1638-1666.
[57] SPIES P J, MCEWAN I K, BUTTERFIELD G R. One-dimensional transitionalbehaviour in saltation[J]. Earth Surface Processes and Landforms, 2000, 25(5):505-518.
[58] WANG P, ZHENG X J. Saltation transport rate in unsteady wind variations[J]. The European Physical Journal E, 2014, 37(5):40.
[59] ZHANG H, ZHENG X J, BO T L. Electric fields in unsteady wind-blown sand[J]. The European Physical Journal E, 2014, 37(2):13.
[60] VAN DOP H, NIEUWSTADT F T M, HUNT J C R. Random walk models for particle displacements in inhomogeneous unsteady turbulent flows[J]. Physics of Fluids, 1985, 28(6):1639-1653.
[61] SAWFORD B L, GUEST F M.Lagrangian statistical simulation of the turbulent motion of heavy particles[J]. Boundary-Layer Meteorology, 1991, 54(1-2):147-166.
[62] WILSON J D, SAWFORD B L. Review ofLagrangian stochastic models for trajectories in the turbulent atmosphere[J]. Boundary-Layer Meteorology, 1996, 78(1-2):191-210.
[63] EDSON J B, FAIRALL C W. Spray droplet modeling:1.Lagrangian model simulation of the turbulent transport of evaporating droplets[J]. Journal of Geophysical Research:Atmospheres, 1994, 99(C12):252955-25311.
[64] ANDERSON R S. Eolian sediment transport as a stochastic process:The effects of a fluctuating wind on particle trajectories[J]. The Journal of Geology, 1987, 95(4):497-512.
[65] SHAO Y P.A Lagrangian stochastic model for nonpassive particle diffusion in turbulent flows[J]. Mathematical and Computer Modelling, 1995, 21(9):31-37.
[66] 郑晓静, 王萍. 风沙流中沙粒随机运动的数值模拟研究[J]. 中国沙漠, 2006, 26(2):184-188. ZHENG X J, WANG P.Numerical simulation on stochastic movement of sands in wind-blown sand[J]. Journal of Desert Research, 2006, 26(2):184-188(in Chinese).
[67] WANG P, ZHENG X J, HU W W. Saltation and suspension of wind-blown particle movement[J]. Science in China Series G:Physics, Mechanics and Astronomy, 2008, 51(10):1586-1596.
[68] KOK J F, RENNO N O. A comprehensive numerical model of steady state saltation (COMSALT)[J]. Journal of Geophysical Research:Atmospheres, 2009, 114(D17):D17204.
[69] CHENG X L, WU L, HU F, et al. Parameterizations of some important characteristics of turbulent fluctuations and gusty wind disturbances in the atmospheric boundary layer[J]. Journal of Geophysical Research:Atmospheres, 2012, 117(D8):D08113.
[70] CHENG X L, ZENG Q C, HU F. Stochastic modeling the effect of wind gust on dust entrainment during sand storm[J]. Chinese Science Bulletin, 2012, 57(27):3595-3602.
[71] TANAKA T Y, CHIBA M. A numerical study of the contributions of dust source regions to the global dust budget[J]. Global and Planetary Change, 2006, 52(1-4):88-104.
[72] ZENDER C S. Mineral Dust Entrainment and Deposition (DEAD) model:Description and 1990 s dust climatology[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D14):4416.
[73] SHAO Y P, YANG Y, WANG J J, et al. Northeast Asian dust storms:Real-time numerical prediction and validation[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D22):4691.
[74] SHAO Y P, LESLIE L M. Wind erosion prediction over the Australian continent[J]. Journal of Geophysical Research:Atmospheres, 1997, 102(D25):30091-30105.
[75] MARTICORENA B, BERGAMETTI G, AUMONT B, et al. Modeling the atmospheric dust cycle:2.Simulation of Saharan dust sources[J]. Journal of Geophysical Research:Atmospheres, 1997, 102(D4):4387-4404.
[76] SHAO Y P. Physics and modelling of wind erosion[M]. Dordrecht:Springer Netherlands,2009.
[77] ZHENG X J, BO T L, XIE L. DPTM simulation of aeolian sand ripple[J]. Science in China Series G:Physics, Mechanics and Astronomy, 2008, 51(3):328-336.
[78] ZHENG X J, BO T L, ZHU W. A scale-coupled method for simulation of the formation and evolution of aeolian dune field[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2009, 10(3):387-396.
[79] ANDREOTTI B, CLAUDIN P, DOUADY S. Selection of dune shapes and velocities Part 1:Dynamics of sand, wind and barchans[J]. The European Physical Journal B-Condensed Matter, 2002, 28(3):321-339.
[80] ELBELRHITI H, CLAUDIN P, ANDREOTTI B. Field evidence for surface-wave-induced instability of sand dunes[J]. Nature, 2005, 437(7059):720-723.
[81] WASSON R J, HYDE R. Factors determining desert dune type[J]. Nature, 1983, 304(5924):337-339.
[82] SQUIRES K D, EATON J K. Particle response and turbulence modification in isotropic turbulence[J]. Physics of Fluids A:Fluid Dynamics, 1990, 2(7):1191-1203.
[83] 范全林, 张会强, 郭印诚, 等. 自由剪切湍流中颗粒-拟序结构相互作用研究进展[J]. 力学进展, 2001, 31(4):611-620. FAN Q L, ZHANG H Q, GUO Y C, et al. Particle-vortex interactions in turbulent shear flows[J]. Advances in Mechanics, 2001,31(4):611-620(in Chinese).
[84] PAN Y, BANERJEE S. Numerical simulation of particle interactions with wall turbulence[J]. Physics of Fluids, 1996, 8(10):2733-2755.
[85] VREMAN A W. Turbulence characteristics of particle-laden pipe flow[J]. Journal of Fluid Mechanics, 2007, 584:235-279.
[86] SARDINA G, PICANO F, SCHLATTER P, et al.Large scale accumulation patterns of inertial particles in wall-bounded turbulent flow[J]. Flow, Turbulence and Combustion, 2011, 86(3-4):519-532.
[87] DRITSELIS C D, VLACHOS N S. Numerical investigation of momentum exchange between particles and coherent structures in low Re turbulent channel flow[J]. Physics of Fluids, 2011, 23(2):025103.
[88] ZHAO L H, ANDERSSON H I, GILLISSEN J J J. Turbulence modulation and drag reduction by spherical particles[J]. Physics of Fluids, 2010, 22(8):081702.
[89] ZHAO L H, ANDERSSON H I, GILLISSEN J J J. Interphasial energy transfer and particle dissipation in particle-laden wall turbulence[J]. Journal of Fluid Mechanics, 2013, 715:32-59.
[90] BERNARDINI M. Reynolds number scaling of inertial particle statistics in turbulent channel flows[J]. Journal of Fluid Mechanics, 2014, 758:R1.
[91] LI D, LUO K, FAN J R. Modulation of turbulence by dispersed solid particles in a spatially developing flat-plate boundary layer[J]. Journal of Fluid Mechanics, 2016, 802:359-394.
[92] WANG G,RICHTER D H. Two mechanisms of modulation of very-large-scale motions by inertial particles in open channel flow[J]. Journal of Fluid Mechanics, 2019, 868:538-559.
[93] LEE J, LEE C. The effect of wall-normal gravity on particle-laden near-wall turbulence[J]. Journal of Fluid Mechanics, 2019, 873:475-507.
[94] ZHOU T, ZHAO L H, HUANG W X, et al. Non-monotonic effect of mass loading on turbulence modulations in particle-laden channel flow[J]. Physics of Fluids, 2020, 32(4):043304.
[95] PAN QQ, XIANG H, WANG Z, et al. Kinetic energy balance in turbulent particle-laden channel flow[J]. Physics of Fluids, 2020, 32(7):073307.
[96] PAN Y, BANERJEE S. Numerical investigation of the effects of large particles on wall-turbulence[J]. Physics of Fluids, 1997, 9(12):3786-3807.
[97] SHAO X M, WU T H, YU Z S. Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number[J]. Journal of FluidMechanics, 2012, 693:319-344.
[98] LI R Y, HUANG W X, ZHAO L H, et al. Assessment of force models on finite-sized particles at finite Reynolds numbers[J]. Applied Mathematics and Mechanics, 2020, 41(6):953-966.
[99] BREUGEM W P. A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows[J]. Journal of Computational Physics, 2012, 231(13):4469-4498.
[100] JI C, MUNJIZA A, AVITAL E, et al. Direct numerical simulation of sediment entrainment in turbulent channel flow[J]. Physics of Fluids, 2013, 25(5):056601.
[101] JI C N, MUNJIZA A, AVITAL E, et al. Saltation of particles in turbulent channel flow[J]. Physical Review E, 2014, 89(5):052202.
[102] VOWINCKEL B, KEMPE T, FRÖHLICH J. Fluid-particle interaction in turbulent open channel flow with fully-resolved mobile beds[J]. Advances in Water Resources, 2014, 72:32-44.
[103] KIDANEMARIAM A G, UHLMANN M. Direct numerical simulation of pattern formation in subaqueous sediment[J]. Journal of Fluid Mechanics, 2014, 750:R2.
[104] KIDANEMARIAM A G, UHLMANN M. Formation of sediment patterns in channel flow:Minimal unstable systems and their temporal evolution[J]. Journal of Fluid Mechanics, 2017, 818:716-743.
[105] ZHU Z P, ZHENG X J, SHEN L. Particle number decomposition DEM parallel algorithm for particle laden flows[C]//The 72nd Annual Meeting of the APS Division of Fluid Dynamics, 2019.
[106] HUGHES G O. Inside the head and tail of a turbulent gravity current[J]. Journal of Fluid Mechanics, 2016, 790:1-4.
[107] XIE C Y, TAO J J, ZHANG L S. Origin of lobe and cleft at the gravity current front[J]. Physical Review E, 2019, 100(3):031103.
[108] LOZANO-DURÁN A, JIMÉNEZ J. Effect of the computational domain on direct simulations of turbulent channels up to Reτ=4200[J]. Physics of Fluids, 2014, 26(1):011702.
[109] MOSER R D, KIM J, MANSOUR N N. Direct numerical simulation of turbulent channel flow up to Reτ=590[J]. Physics of Fluids, 1999, 11(4):943-945.
[110] AHN J, LEE J H, LEE J, et al. Direct numerical simulation of a 30R long turbulent pipe flow at Reτ=3008[J]. Physics of Fluids, 2015, 27(6):065110.
[111] YAMAMOTO Y, TSUJI Y. Numerical evidence of logarithmic regions in channel flow at Reτ=8000[J]. Physical Review Fluids, 2018, 3:012602.
[112] JIE Y C, XU C X, DAWSON J R, et al. Influence of the quiescent core on tracer spheroidal particle dynamics in turbulent channel flow[J]. Journal of Turbulence, 2019, 20(7):424-438.
[113] FOX R O. Large-eddy-simulation tools for multiphase flows[J]. Annual Review of Fluid Mechanics, 2012, 44(1):47-76.
[114] BALACHANDAR S. A scaling analysis for point-particle approaches to turbulent multiphase flows[J]. International Journal of Multiphase Flow, 2009, 35(9):801-810.
[115] MARCHIOLI C. Large-eddy simulation of turbulent dispersed flows:A review of modelling approaches[J]. Acta Mechanica, 2017, 228(3):741-771.
[116] KUERTEN J G M. Point-particle DNS and LES of particle-laden turbulent flow-A state-of-the-art review[J]. Flow, Turbulence and Combustion, 2016, 97(3):689-713.
[117] DRITSELIS C D, VLACHOS N S. Large eddy simulation of gas-particle turbulent channel flow with momentum exchange between the phases[J]. International Journal of Multiphase Flow, 2011, 37(7):706-721.
[118] MALLOUPPAS G, VAN WACHEM B.Large eddy simulations of turbulent particle-laden channel flow[J]. International Journal of Multiphase Flow, 2013, 54:65-75.
[119] YEH F, LEI U. On the motion of small particles in a homogeneous isotropic turbulent flow[J]. Physics of Fluids A:Fluid Dynamics, 1991, 3(11):2571-2586.
[120] WANG Q, SQUIRES K D. Large eddy simulation of particle deposition in a vertical turbulent channel flow[J]. International Journal of Multiphase Flow, 1996, 22(4):667-683.
[121] WANG B. Inter-phase interaction in a turbulent, verticalchannel flow laden with heavy particles. Part I:Numerical methods and particle dispersion properties[J]. International Journal of Heat and Mass Transfer, 2010, 53(11-12):2506-2521.
[122] BREUER M, ALLETTO M. Efficient simulation of particle-laden turbulent flows with high mass loadings using LES[J]. International Journal of Heat and Fluid Flow, 2012, 35:2-12.
[123] CAPECELATRO J, DESJARDINS O. Eulerian-Lagrangian modeling of turbulent liquid-solid slurries in horizontal pipes[J]. International Journal of Multiphase Flow, 2013, 55:64-79.
[124] SCHMEECKLE M W. Numerical simulation of turbulence and sediment transport of medium sand[J]. Journal of Geophysical Research:Earth Surface, 2014, 119(6):1240-1262.
[125] FINN J R, LI M, APTE S V. Particle based modelling and simulation of natural sand dynamics in the wave bottom boundary layer[J]. Journal of Fluid Mechanics, 2016, 796:340-385.
[126] ELGHANNAY H, TAFTI D. LES-DEM simulations of sediment transport[J]. International Journal of Sediment Research, 2018, 33(2):137-148.
[127] LIU D T, LIU X F, FU X D. LES-DEM simulations of sediment saltation in a rough-wall turbulent boundary layer[J]. Journal of Hydraulic Research, 2019, 57(6):786-797.
[128] ZHENG X J, FENG S J, WANG P. Modulation of turbulence by saltating particles on erodible bed surface[J].Journal of Fluid Mechanics, 2021, 918:A16.
[129] DUPONT S, BERGAMETTI G, MARTICORENA B, et al. Modeling saltation intermittency[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(13):7109-7128.
[130] CEYSSELS M, DUPONT P, EL MOCTAR A O, et al. Saltating particles in a turbulent boundary layer:Experiment and theory[J]. Journal of Fluid Mechanics, 2009, 625:47-74.
[131] PIOMELLI U. Wall-layer models for large-eddy simulations[J]. Progress in Aerospace Sciences, 2008, 44(6):437-446.
[132] LARSSON J, KAWAI S, BODART J, et al.Large eddy simulation with modeled wall-stress:Recent progress and future directions[J]. Mechanical Engineering Reviews, 2016, 3(1):1-23.
[133] DEARDORFF J W. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers[J]. Journal of Fluid Mechanics, 1970, 41(2):453-480.
[134] SCHUMANN U.Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli[J]. Journal of Computational Physics, 1975, 18(4):376-404.
[135] MOENG C H. A large-eddy-simulation model for the study of planetary boundary-layer turbulence[J]. Journal of the Atmospheric Sciences, 1984, 41(13):2052-2062.
[136] PIOMELLI U, FERZIGER J, MOIN P, et al. New approximate boundary conditions for large eddy simulations of wall-bounded flows[J]. Physics of Fluids A:Fluid Dynamics, 1989, 1(6):1061-1068.
[137] MATHIS R, MARUSIC I, CHERNYSHENKO S I, et al. Estimating wall-shear-stress fluctuations given an outer region input[J]. Journal of Fluid Mechanics, 2013, 715:163-180.
[138] YANG X, SADIQUE J, MITTAL R, et al. Integral wall model for large eddy simulations of wall-bounded turbulent flows[J]. Physics of Fluids, 2015, 27(2):025112.
[139] ZHANG Y F, VICQUELIN R, GICQUEL O, et al. A wall model for LES accounting for radiation effects[J]. International Journal of Heat and Mass Transfer, 2013, 67:712-723.
[140] VINKOVIC I, AGUIRRE C, AYRAULT M, et al. Large-eddy simulation of the dispersion of solid particles in a turbulent boundary layer[J]. Boundary-Layer Meteorology, 2006, 121(2):283-311.
[141] LI Z Q, WANG Y, ZHANG Y. A numerical study of particle motion and two-phase interaction in aeolian sand transport using a coupled large eddy simulation-discrete element method[J]. Sedimentology, 2014, 61(2):319-332.
[142] WERNER H, WENGLE H. Large-eddy simulation of turbulent flow over and around a cube in a platechannel[M]//Turbulent Shear Flows 8. Berlin/Heidelberg:Springer, 1993:155-168.
[143] WANG P, FENG S J, ZHENG X J, et al. The scale characteristics and formation mechanism of aeolian sand streamers based on large eddy simulation[J]. Journal of Geophysical Research:Atmospheres, 2019, 124(21):11372-11388.
[144] PORTÉ-AGEL F, MENEVEAU C, PARLANGE M B. A scale-dependent dynamic model for large-eddy simulation:Application to a neutral atmospheric boundary layer[J]. Journal of Fluid Mechanics, 2000, 415:261-284.
[145] ZHENG X J, JIN T, WANG P. The influence of surface stress fluctuation on saltation sand transport around threshold[J]. Journal of Geophysical Research:Earth Surface, 2020, 125(5):e2019 JF005246.
[146] SIDEBOTTOM W, CARBIT O, MARUSIC I, et al. Modelling of wall-shear stress fluctuations for large-eddy simulation[C]//Proceeding 19th Australasian Fluid Mechanics Conference, 2014.
[147] GU Z L, ZHAO Y Z, LI Y, et al. Numerical simulation of dust lifting within dust Devils-Simulation of an intense vortex[J]. Journal of the Atmospheric Sciences, 2006, 63(10):2630-2641.
[148] KLOSE M, SHAO Y P. Large-eddy simulation of turbulent dust emission[J]. Aeolian Research, 2013, 8:49-58.
[149] ZHANG Y Y, HU R F, ZHENG X J. Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer:A large-eddy simulation study[J]. Physics of Fluids, 2018, 30(4):046601.
[150] PENG C, AYALA O M, WANG L P. A direct numerical investigation of two-way interactions in a particle-laden turbulent channel flow[J]. Journal of Fluid Mechanics, 2019, 875:1096-1144.
[151] SHI X F, XI P, WU J J. A lattice Boltzmann-Saltation model and its simulation of aeolian saltation at porous fences[J]. Theoretical and Computational Fluid Dynamics, 2015, 29(1-2):1-20.
[152] 逯博, 买买提明·艾尼, 金阿芳, 等. 基于SPH的风沙运动的数值模拟[J]. 力学学报, 2013, 45(2):177-182. LU B, GENI M, JIN A F, et al. Numerical simulation of wind-blown sand movement based on SPH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2):177-182(in Chinese).
[153] 陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J/OL]. 中国科学:技术科学,(2021-04-28)[2021-05-14]. https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese national numericalwindtunnel project[J/OL]. Scientia Sinica Technologica, (2021-04-28)[2021-05-14].https://kns.cnki.net/kcms/detail/11.5844.TH.20210428.0914.006.html (in Chinese).
Outlines

/