[1] ZHENG X J. Mechanics of wind-blown sand movement[M]. Berlin/Heidelberg:Springer, 2009.
[2] BAGNOLD R A. The physics of blown sand and desert dunes[M]. Dordrecht:Springer Netherlands, 1974.
[3] DUFFA G. Ablative thermal protection systems modeling[M].Reston:AIAA, 2013.
[4] COLGLAZIER W. Sustainable development agenda:2030[J]. Science, 2015, 349(6252):1048-1050.
[5] 全国重要生态系统保护和修复重大工程总体规划(2021-2035年)[EB/OL]. (2020-06-12)[2021-04-02]. http://www.mnr.gov.cn/dt/ywbb/202006/t20200612_25258-56.html. Master plan for major projects of national important ecosystem protection and restoration (2021-2035)[EB/OL]. (2020-06-12)[2021-04-02]. http://www.mnr.gov.cn/dt/ywbb/202006/t20200612_2525856.html (in Chinese).
[6] ZHENG X J. Electrification of wind-blown sand:Recent advances and key issues[J]. The European Physical Journal E, 2013, 36(12):138.
[7] BALACHANDAR S, EATON J K. Turbulent dispersed multiphase flow[J]. Annual Review of Fluid Mechanics, 2010, 42(1):111-133.
[8] KENNEDY D. What don't we know?[J]. Science, 2005, 309(5731):75.
[9] OWEN P R. Saltation of uniform grains in air[J]. Journal of Fluid Mechanics, 1964, 20(2):225-242.
[10] WHITE B R, GREELEY R, IVERSEN J D, et al. Estimated grain saltation in a Martian atmosphere[J]. Journal of Geophysical Research:Atmospheres, 1976, 81(32):5643-5650.
[11] WHITE B R. Soil transport by winds on Mars[J]. Journal of Geophysical Research:Atmospheres, 1979, 84(B9):4643-4651.
[12] ANDERSON R S, HALLET B. Sediment transport by wind:Toward a general model[J]. Geological Society of America Bulletin, 1986, 97(5):523-535.
[13] 刘大有, 董飞. 风沙二相流动的三流体模型[J]. 应用数学和力学, 1996, 17(7):613-624. LIU D Y, DONG F. Athree-fluid model of the sand-driven flow[J]. Applied Mathematics and Mechanics, 1996, 17(7):613-624(in Chinese).
[14] UNGAR J E, HAFF P K. Steady state saltation in air[J]. Sedimentology, 1987, 34(2):289-299.
[15] WERNER B T. A steady-state model of wind-blown sand transport[J]. The Journal of Geology, 1990, 98(1):1-17.
[16] ANDERSON R S, HAFF P K. Simulation of eolian saltation[J]. Science, 1988, 241(4867):820-823.
[17] BAUER B O, DAVIDSON-ARNOTT R G D, ORDSTROM N K F, et al. Indeterminacy in Aeolian sediment transport across beaches[J]. Journal of Coastal Research, 1996, 12(3):641-653.
[18] BAAS A C W, SHERMAN D J. Spatiotemporal variability of aeolian sand transport in a coastal dune environment[J]. Journal of Coastal Research, 2006, 225:1198-1205.
[19] ELLIS J T, SHERMAN D J, FARRELL E J, et al. Temporal and spatial variability of aeolian sand transport:Implications for field measurements[J]. Aeolian Research, 2012, 3(4):379-387.
[20] SHERMAN D J, HOUSER C, ELLIS J T, et al. Characterization of aeolian streamers using time-average videography[J]. Journal of Coastal Research, 2013, 65(sp2):1331-1336.
[21] KLINE S J, REYNOLDS W C, SCHRAUB F A, et al. The structure of turbulent boundary layers[J]. Journal of Fluid Mechanics, 1967, 30(4):741-773.
[22] ROBINSON S K. Coherent motions in the turbulent boundary layer[J]. Annual Review of Fluid Mechanics, 1991, 23(1):601-639.
[23] 杨强, 袁先旭, 陈坚强, 等. 不可压壁湍流中基本相干结构[J]. 空气动力学学报, 2020, 38(1):83-99. YANG Q, YUAN X X, CHEN J Q, et al. On elementary coherent structures in incompressible wall-bounded turbulence[J]. Acta Aerodynamica Sinica, 2020, 38(1):83-99(in Chinese).
[24] KIM K C, ADRIAN R J. Very large-scale motion in the outer layer[J]. Physics of Fluids, 1999, 11(2):417-422.
[25] HUTCHINS N, MARUSIC I. Evidence of very long meandering features in the logarithmic region ofturbulent boundary layers[J]. Journal of Fluid Mechanics, 2007, 579:1-28.
[26] WANG G H, ZHENG X J. Verylarge scale motions in the atmospheric surface layer:A field investigation[J]. Journal of Fluid Mechanics, 2016, 802:464-489.
[27] ZHENG X J, ZHANG J H, WANG G H, et al. Investigation on very large scale motions (VLSMs) and their influence in a dust storm[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(2):306-314.
[28] WANG G H, ZHENG X J, TAO J J. Very large scale motions and PM10 concentration in a high-Re boundary layer[J]. Physics of Fluids, 2017, 29(6):061701.
[29] BAAS A C W. Formation and behavior of aeolian streamers[J]. Journal of Geophysical Research:Atmospheres, 2005, 110(F3):F03011.
[30] JACKSON D W T, MCCLOSKEY J. Preliminary results from a field investigation of aeolian sand transport using high resolution wind and transport measurements[J]. Geophysical Research Letters, 1997, 24(2):163-166.
[31] RASMUSSEN K R, SØRENSEN M. Aeolian mass transport near the saltation threshold[J]. Earth Surface Processes and Landforms, 1999, 24(5):413-422.
[32] CARNEIRO M V, RASMUSSEN K R, HERRMANN H J. Bursts in discontinuous Aeolian saltation[J]. Scientific Reports, 2015, 5:11109.
[33] DIPLAS P, DANCEY C L, CELIK A O, et al. The role of impulse on the initiation of particle movement under turbulent flow conditions[J]. Science, 2008, 322(5902):717-720.
[34] VALYRAKIS M, DIPLAS P, DANCEY C L, et al. Role of instantaneous force magnitude and duration on particle entrainment[J]. Journal of Geophysical Research:Earth Surface, 2010, 115(F2):F02006.
[35] ZHENG X J, HE L H, WU J J. Vertical profiles of mass flux for windblown sand movement at steady state[J]. Journal of Geophysical Research:Solid Earth, 2004, 109(B1):B01106.
[36] ANDERSON R S, HAFF P K. Wind modification and bed response during saltation of sand in air[M]//Aeolian Grain Transport 1. Vienna:Springer, 1991:21-51.
[37] MCEWAN I K, WILLETTS B B. Numerical model of the saltation cloud[M]//Aeolian Grain Transport 1. Vienna:Springer, 1991:53-66.
[38] MCEWAN I K, WILLETTS B B. Adaptation of the near-surface wind to the development of sand transport[J]. Journal of Fluid Mechanics, 1993, 252:99-115.
[39] WILLETTS B B, RICE M A. Collisions in aeolian saltation[J]. Acta Mechanica, 1986, 63(1-4):255-265.
[40] WILLETTS B B, RICE M A. Collisions of quartz grains with a sand bed:The influence of incident angle[J]. Earth Surface Processes and Landforms, 1989, 14(8):719-730.
[41] SHAO Y P, LI A. Numerical modelling of saltation in the atmospheric surface layer[J]. Boundary-Layer Meteorology, 1999, 91(2):199-225.
[42] SHAO Y, RAUPACH M R. The overshoot and equilibration of saltation[J]. Journal of Geophysical Research:Atmospheres, 1992, 97(D18):20559-20564.
[43] ALMEIDA M P, ANDRADE J S, HERRMANN H J. Aeolian transport layer[J]. Physical Review Letters, 2006, 96(1):018001.
[44] ALMEIDA M P, PARTELI E J R, ANDRADE J S, et al. Giant saltation on Mars[J].Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(17):6222-6226.
[45] HUANG H J, BO T L, ZHENG X J. Numerical modeling of wind-blown sand on Mars[J]. The European Physical Journal E, 2014, 37(9):36.
[46] ZHENG X J, FU L T, BO T L. Incident velocity and incident angle of saltating sand grains on Mars[J]. New Journal of Physics, 2013, 15(4):043014.
[47] SCHMIDT D S, SCHMIDT R A, DENT J D. Electrostatic force on saltating sand[J]. Journal of Geophysical Research:Atmospheres, 1998, 103(D8):8997-9001.
[48] ZHENG X J, HUANG N, ZHOU Y H. Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D10):4322.
[49] BO T L, ZHENG X J. A field observational study of electrification within a dust storm inMinqin, China[J]. Aeolian Research, 2013, 8:39-47.
[50] ZHENG X J, HUANG N, ZHOU Y. The effect of electrostatic force on the evolution of sand saltation cloud[J]. The European Physical Journal E, 2006, 19(2):129-138.
[51] KOK J F, RENNO N O. Electrostatics in wind-blown sand[J]. Physical Review Letters, 2008, 100:014501.
[52] HU W W, XIE L, ZHENG X J. Simulation of the electrification of wind-blown sand[J]. The European Physical Journal E, 2012, 35(3):1-8.
[53] CARNEIRO M V, PÄHTZ T, HERRMANN H J. Jump at the onset of saltation[J]. Physical Review Letters, 2011, 107(9):098001.
[54] DURÁN O, ANDREOTTI B, CLAUDIN P. Numerical simulation of turbulent sediment transport, from bed load to saltation[J]. Physics of Fluids, 2012, 24(10):103306.
[55] PÄHTZ T, DURÁN O. Fluid forces or impacts:What governs the entrainment of soil particles in sediment transport mediated by a Newtonian fluid?[J]. Physical Review Fluids, 2017, 2(7):074303.
[56] PÄHTZ T, DURÁN O. The cessation threshold ofnonsuspended sediment transport across aeolian and fluvial environments[J]. Journal of Geophysical Research:Earth Surface, 2018, 123(8):1638-1666.
[57] SPIES P J, MCEWAN I K, BUTTERFIELD G R. One-dimensional transitionalbehaviour in saltation[J]. Earth Surface Processes and Landforms, 2000, 25(5):505-518.
[58] WANG P, ZHENG X J. Saltation transport rate in unsteady wind variations[J]. The European Physical Journal E, 2014, 37(5):40.
[59] ZHANG H, ZHENG X J, BO T L. Electric fields in unsteady wind-blown sand[J]. The European Physical Journal E, 2014, 37(2):13.
[60] VAN DOP H, NIEUWSTADT F T M, HUNT J C R. Random walk models for particle displacements in inhomogeneous unsteady turbulent flows[J]. Physics of Fluids, 1985, 28(6):1639-1653.
[61] SAWFORD B L, GUEST F M.Lagrangian statistical simulation of the turbulent motion of heavy particles[J]. Boundary-Layer Meteorology, 1991, 54(1-2):147-166.
[62] WILSON J D, SAWFORD B L. Review ofLagrangian stochastic models for trajectories in the turbulent atmosphere[J]. Boundary-Layer Meteorology, 1996, 78(1-2):191-210.
[63] EDSON J B, FAIRALL C W. Spray droplet modeling:1.Lagrangian model simulation of the turbulent transport of evaporating droplets[J]. Journal of Geophysical Research:Atmospheres, 1994, 99(C12):252955-25311.
[64] ANDERSON R S. Eolian sediment transport as a stochastic process:The effects of a fluctuating wind on particle trajectories[J]. The Journal of Geology, 1987, 95(4):497-512.
[65] SHAO Y P.A Lagrangian stochastic model for nonpassive particle diffusion in turbulent flows[J]. Mathematical and Computer Modelling, 1995, 21(9):31-37.
[66] 郑晓静, 王萍. 风沙流中沙粒随机运动的数值模拟研究[J]. 中国沙漠, 2006, 26(2):184-188. ZHENG X J, WANG P.Numerical simulation on stochastic movement of sands in wind-blown sand[J]. Journal of Desert Research, 2006, 26(2):184-188(in Chinese).
[67] WANG P, ZHENG X J, HU W W. Saltation and suspension of wind-blown particle movement[J]. Science in China Series G:Physics, Mechanics and Astronomy, 2008, 51(10):1586-1596.
[68] KOK J F, RENNO N O. A comprehensive numerical model of steady state saltation (COMSALT)[J]. Journal of Geophysical Research:Atmospheres, 2009, 114(D17):D17204.
[69] CHENG X L, WU L, HU F, et al. Parameterizations of some important characteristics of turbulent fluctuations and gusty wind disturbances in the atmospheric boundary layer[J]. Journal of Geophysical Research:Atmospheres, 2012, 117(D8):D08113.
[70] CHENG X L, ZENG Q C, HU F. Stochastic modeling the effect of wind gust on dust entrainment during sand storm[J]. Chinese Science Bulletin, 2012, 57(27):3595-3602.
[71] TANAKA T Y, CHIBA M. A numerical study of the contributions of dust source regions to the global dust budget[J]. Global and Planetary Change, 2006, 52(1-4):88-104.
[72] ZENDER C S. Mineral Dust Entrainment and Deposition (DEAD) model:Description and 1990 s dust climatology[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D14):4416.
[73] SHAO Y P, YANG Y, WANG J J, et al. Northeast Asian dust storms:Real-time numerical prediction and validation[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D22):4691.
[74] SHAO Y P, LESLIE L M. Wind erosion prediction over the Australian continent[J]. Journal of Geophysical Research:Atmospheres, 1997, 102(D25):30091-30105.
[75] MARTICORENA B, BERGAMETTI G, AUMONT B, et al. Modeling the atmospheric dust cycle:2.Simulation of Saharan dust sources[J]. Journal of Geophysical Research:Atmospheres, 1997, 102(D4):4387-4404.
[76] SHAO Y P. Physics and modelling of wind erosion[M]. Dordrecht:Springer Netherlands,2009.
[77] ZHENG X J, BO T L, XIE L. DPTM simulation of aeolian sand ripple[J]. Science in China Series G:Physics, Mechanics and Astronomy, 2008, 51(3):328-336.
[78] ZHENG X J, BO T L, ZHU W. A scale-coupled method for simulation of the formation and evolution of aeolian dune field[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2009, 10(3):387-396.
[79] ANDREOTTI B, CLAUDIN P, DOUADY S. Selection of dune shapes and velocities Part 1:Dynamics of sand, wind and barchans[J]. The European Physical Journal B-Condensed Matter, 2002, 28(3):321-339.
[80] ELBELRHITI H, CLAUDIN P, ANDREOTTI B. Field evidence for surface-wave-induced instability of sand dunes[J]. Nature, 2005, 437(7059):720-723.
[81] WASSON R J, HYDE R. Factors determining desert dune type[J]. Nature, 1983, 304(5924):337-339.
[82] SQUIRES K D, EATON J K. Particle response and turbulence modification in isotropic turbulence[J]. Physics of Fluids A:Fluid Dynamics, 1990, 2(7):1191-1203.
[83] 范全林, 张会强, 郭印诚, 等. 自由剪切湍流中颗粒-拟序结构相互作用研究进展[J]. 力学进展, 2001, 31(4):611-620. FAN Q L, ZHANG H Q, GUO Y C, et al. Particle-vortex interactions in turbulent shear flows[J]. Advances in Mechanics, 2001,31(4):611-620(in Chinese).
[84] PAN Y, BANERJEE S. Numerical simulation of particle interactions with wall turbulence[J]. Physics of Fluids, 1996, 8(10):2733-2755.
[85] VREMAN A W. Turbulence characteristics of particle-laden pipe flow[J]. Journal of Fluid Mechanics, 2007, 584:235-279.
[86] SARDINA G, PICANO F, SCHLATTER P, et al.Large scale accumulation patterns of inertial particles in wall-bounded turbulent flow[J]. Flow, Turbulence and Combustion, 2011, 86(3-4):519-532.
[87] DRITSELIS C D, VLACHOS N S. Numerical investigation of momentum exchange between particles and coherent structures in low Re turbulent channel flow[J]. Physics of Fluids, 2011, 23(2):025103.
[88] ZHAO L H, ANDERSSON H I, GILLISSEN J J J. Turbulence modulation and drag reduction by spherical particles[J]. Physics of Fluids, 2010, 22(8):081702.
[89] ZHAO L H, ANDERSSON H I, GILLISSEN J J J. Interphasial energy transfer and particle dissipation in particle-laden wall turbulence[J]. Journal of Fluid Mechanics, 2013, 715:32-59.
[90] BERNARDINI M. Reynolds number scaling of inertial particle statistics in turbulent channel flows[J]. Journal of Fluid Mechanics, 2014, 758:R1.
[91] LI D, LUO K, FAN J R. Modulation of turbulence by dispersed solid particles in a spatially developing flat-plate boundary layer[J]. Journal of Fluid Mechanics, 2016, 802:359-394.
[92] WANG G,RICHTER D H. Two mechanisms of modulation of very-large-scale motions by inertial particles in open channel flow[J]. Journal of Fluid Mechanics, 2019, 868:538-559.
[93] LEE J, LEE C. The effect of wall-normal gravity on particle-laden near-wall turbulence[J]. Journal of Fluid Mechanics, 2019, 873:475-507.
[94] ZHOU T, ZHAO L H, HUANG W X, et al. Non-monotonic effect of mass loading on turbulence modulations in particle-laden channel flow[J]. Physics of Fluids, 2020, 32(4):043304.
[95] PAN QQ, XIANG H, WANG Z, et al. Kinetic energy balance in turbulent particle-laden channel flow[J]. Physics of Fluids, 2020, 32(7):073307.
[96] PAN Y, BANERJEE S. Numerical investigation of the effects of large particles on wall-turbulence[J]. Physics of Fluids, 1997, 9(12):3786-3807.
[97] SHAO X M, WU T H, YU Z S. Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number[J]. Journal of FluidMechanics, 2012, 693:319-344.
[98] LI R Y, HUANG W X, ZHAO L H, et al. Assessment of force models on finite-sized particles at finite Reynolds numbers[J]. Applied Mathematics and Mechanics, 2020, 41(6):953-966.
[99] BREUGEM W P. A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows[J]. Journal of Computational Physics, 2012, 231(13):4469-4498.
[100] JI C, MUNJIZA A, AVITAL E, et al. Direct numerical simulation of sediment entrainment in turbulent channel flow[J]. Physics of Fluids, 2013, 25(5):056601.
[101] JI C N, MUNJIZA A, AVITAL E, et al. Saltation of particles in turbulent channel flow[J]. Physical Review E, 2014, 89(5):052202.
[102] VOWINCKEL B, KEMPE T, FRÖHLICH J. Fluid-particle interaction in turbulent open channel flow with fully-resolved mobile beds[J]. Advances in Water Resources, 2014, 72:32-44.
[103] KIDANEMARIAM A G, UHLMANN M. Direct numerical simulation of pattern formation in subaqueous sediment[J]. Journal of Fluid Mechanics, 2014, 750:R2.
[104] KIDANEMARIAM A G, UHLMANN M. Formation of sediment patterns in channel flow:Minimal unstable systems and their temporal evolution[J]. Journal of Fluid Mechanics, 2017, 818:716-743.
[105] ZHU Z P, ZHENG X J, SHEN L. Particle number decomposition DEM parallel algorithm for particle laden flows[C]//The 72nd Annual Meeting of the APS Division of Fluid Dynamics, 2019.
[106] HUGHES G O. Inside the head and tail of a turbulent gravity current[J]. Journal of Fluid Mechanics, 2016, 790:1-4.
[107] XIE C Y, TAO J J, ZHANG L S. Origin of lobe and cleft at the gravity current front[J]. Physical Review E, 2019, 100(3):031103.
[108] LOZANO-DURÁN A, JIMÉNEZ J. Effect of the computational domain on direct simulations of turbulent channels up to Reτ=4200[J]. Physics of Fluids, 2014, 26(1):011702.
[109] MOSER R D, KIM J, MANSOUR N N. Direct numerical simulation of turbulent channel flow up to Reτ=590[J]. Physics of Fluids, 1999, 11(4):943-945.
[110] AHN J, LEE J H, LEE J, et al. Direct numerical simulation of a 30R long turbulent pipe flow at Reτ=3008[J]. Physics of Fluids, 2015, 27(6):065110.
[111] YAMAMOTO Y, TSUJI Y. Numerical evidence of logarithmic regions in channel flow at Reτ=8000[J]. Physical Review Fluids, 2018, 3:012602.
[112] JIE Y C, XU C X, DAWSON J R, et al. Influence of the quiescent core on tracer spheroidal particle dynamics in turbulent channel flow[J]. Journal of Turbulence, 2019, 20(7):424-438.
[113] FOX R O. Large-eddy-simulation tools for multiphase flows[J]. Annual Review of Fluid Mechanics, 2012, 44(1):47-76.
[114] BALACHANDAR S. A scaling analysis for point-particle approaches to turbulent multiphase flows[J]. International Journal of Multiphase Flow, 2009, 35(9):801-810.
[115] MARCHIOLI C. Large-eddy simulation of turbulent dispersed flows:A review of modelling approaches[J]. Acta Mechanica, 2017, 228(3):741-771.
[116] KUERTEN J G M. Point-particle DNS and LES of particle-laden turbulent flow-A state-of-the-art review[J]. Flow, Turbulence and Combustion, 2016, 97(3):689-713.
[117] DRITSELIS C D, VLACHOS N S. Large eddy simulation of gas-particle turbulent channel flow with momentum exchange between the phases[J]. International Journal of Multiphase Flow, 2011, 37(7):706-721.
[118] MALLOUPPAS G, VAN WACHEM B.Large eddy simulations of turbulent particle-laden channel flow[J]. International Journal of Multiphase Flow, 2013, 54:65-75.
[119] YEH F, LEI U. On the motion of small particles in a homogeneous isotropic turbulent flow[J]. Physics of Fluids A:Fluid Dynamics, 1991, 3(11):2571-2586.
[120] WANG Q, SQUIRES K D. Large eddy simulation of particle deposition in a vertical turbulent channel flow[J]. International Journal of Multiphase Flow, 1996, 22(4):667-683.
[121] WANG B. Inter-phase interaction in a turbulent, verticalchannel flow laden with heavy particles. Part I:Numerical methods and particle dispersion properties[J]. International Journal of Heat and Mass Transfer, 2010, 53(11-12):2506-2521.
[122] BREUER M, ALLETTO M. Efficient simulation of particle-laden turbulent flows with high mass loadings using LES[J]. International Journal of Heat and Fluid Flow, 2012, 35:2-12.
[123] CAPECELATRO J, DESJARDINS O. Eulerian-Lagrangian modeling of turbulent liquid-solid slurries in horizontal pipes[J]. International Journal of Multiphase Flow, 2013, 55:64-79.
[124] SCHMEECKLE M W. Numerical simulation of turbulence and sediment transport of medium sand[J]. Journal of Geophysical Research:Earth Surface, 2014, 119(6):1240-1262.
[125] FINN J R, LI M, APTE S V. Particle based modelling and simulation of natural sand dynamics in the wave bottom boundary layer[J]. Journal of Fluid Mechanics, 2016, 796:340-385.
[126] ELGHANNAY H, TAFTI D. LES-DEM simulations of sediment transport[J]. International Journal of Sediment Research, 2018, 33(2):137-148.
[127] LIU D T, LIU X F, FU X D. LES-DEM simulations of sediment saltation in a rough-wall turbulent boundary layer[J]. Journal of Hydraulic Research, 2019, 57(6):786-797.
[128] ZHENG X J, FENG S J, WANG P. Modulation of turbulence by saltating particles on erodible bed surface[J].Journal of Fluid Mechanics, 2021, 918:A16.
[129] DUPONT S, BERGAMETTI G, MARTICORENA B, et al. Modeling saltation intermittency[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(13):7109-7128.
[130] CEYSSELS M, DUPONT P, EL MOCTAR A O, et al. Saltating particles in a turbulent boundary layer:Experiment and theory[J]. Journal of Fluid Mechanics, 2009, 625:47-74.
[131] PIOMELLI U. Wall-layer models for large-eddy simulations[J]. Progress in Aerospace Sciences, 2008, 44(6):437-446.
[132] LARSSON J, KAWAI S, BODART J, et al.Large eddy simulation with modeled wall-stress:Recent progress and future directions[J]. Mechanical Engineering Reviews, 2016, 3(1):1-23.
[133] DEARDORFF J W. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers[J]. Journal of Fluid Mechanics, 1970, 41(2):453-480.
[134] SCHUMANN U.Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli[J]. Journal of Computational Physics, 1975, 18(4):376-404.
[135] MOENG C H. A large-eddy-simulation model for the study of planetary boundary-layer turbulence[J]. Journal of the Atmospheric Sciences, 1984, 41(13):2052-2062.
[136] PIOMELLI U, FERZIGER J, MOIN P, et al. New approximate boundary conditions for large eddy simulations of wall-bounded flows[J]. Physics of Fluids A:Fluid Dynamics, 1989, 1(6):1061-1068.
[137] MATHIS R, MARUSIC I, CHERNYSHENKO S I, et al. Estimating wall-shear-stress fluctuations given an outer region input[J]. Journal of Fluid Mechanics, 2013, 715:163-180.
[138] YANG X, SADIQUE J, MITTAL R, et al. Integral wall model for large eddy simulations of wall-bounded turbulent flows[J]. Physics of Fluids, 2015, 27(2):025112.
[139] ZHANG Y F, VICQUELIN R, GICQUEL O, et al. A wall model for LES accounting for radiation effects[J]. International Journal of Heat and Mass Transfer, 2013, 67:712-723.
[140] VINKOVIC I, AGUIRRE C, AYRAULT M, et al. Large-eddy simulation of the dispersion of solid particles in a turbulent boundary layer[J]. Boundary-Layer Meteorology, 2006, 121(2):283-311.
[141] LI Z Q, WANG Y, ZHANG Y. A numerical study of particle motion and two-phase interaction in aeolian sand transport using a coupled large eddy simulation-discrete element method[J]. Sedimentology, 2014, 61(2):319-332.
[142] WERNER H, WENGLE H. Large-eddy simulation of turbulent flow over and around a cube in a platechannel[M]//Turbulent Shear Flows 8. Berlin/Heidelberg:Springer, 1993:155-168.
[143] WANG P, FENG S J, ZHENG X J, et al. The scale characteristics and formation mechanism of aeolian sand streamers based on large eddy simulation[J]. Journal of Geophysical Research:Atmospheres, 2019, 124(21):11372-11388.
[144] PORTÉ-AGEL F, MENEVEAU C, PARLANGE M B. A scale-dependent dynamic model for large-eddy simulation:Application to a neutral atmospheric boundary layer[J]. Journal of Fluid Mechanics, 2000, 415:261-284.
[145] ZHENG X J, JIN T, WANG P. The influence of surface stress fluctuation on saltation sand transport around threshold[J]. Journal of Geophysical Research:Earth Surface, 2020, 125(5):e2019 JF005246.
[146] SIDEBOTTOM W, CARBIT O, MARUSIC I, et al. Modelling of wall-shear stress fluctuations for large-eddy simulation[C]//Proceeding 19th Australasian Fluid Mechanics Conference, 2014.
[147] GU Z L, ZHAO Y Z, LI Y, et al. Numerical simulation of dust lifting within dust Devils-Simulation of an intense vortex[J]. Journal of the Atmospheric Sciences, 2006, 63(10):2630-2641.
[148] KLOSE M, SHAO Y P. Large-eddy simulation of turbulent dust emission[J]. Aeolian Research, 2013, 8:49-58.
[149] ZHANG Y Y, HU R F, ZHENG X J. Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer:A large-eddy simulation study[J]. Physics of Fluids, 2018, 30(4):046601.
[150] PENG C, AYALA O M, WANG L P. A direct numerical investigation of two-way interactions in a particle-laden turbulent channel flow[J]. Journal of Fluid Mechanics, 2019, 875:1096-1144.
[151] SHI X F, XI P, WU J J. A lattice Boltzmann-Saltation model and its simulation of aeolian saltation at porous fences[J]. Theoretical and Computational Fluid Dynamics, 2015, 29(1-2):1-20.
[152] 逯博, 买买提明·艾尼, 金阿芳, 等. 基于SPH的风沙运动的数值模拟[J]. 力学学报, 2013, 45(2):177-182. LU B, GENI M, JIN A F, et al. Numerical simulation of wind-blown sand movement based on SPH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2):177-182(in Chinese).
[153] 陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J/OL]. 中国科学:技术科学,(2021-04-28)[2021-05-14]. https://kns.cnki.net/kcms/detail/11.5844.TH.2021-0428.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese national numericalwindtunnel project[J/OL]. Scientia Sinica Technologica, (2021-04-28)[2021-05-14].https://kns.cnki.net/kcms/detail/11.5844.TH.20210428.0914.006.html (in Chinese).