Article

Numerical simulation research of influence of wake flow field on inlet temperature field of carrier-based aircraft

  • WANG Xiao ,
  • CHENG Jianhui ,
  • SHEN Tianrong ,
  • XU Baocheng ,
  • MENG Xuan
Expand
  • 1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China;
    2. AVIC Shenyang Aircraft Design and Research Institute, Shenyang 110035, China

Received date: 2021-04-15

  Revised date: 2021-05-08

  Online published: 2021-05-21

Supported by

National Level Project

Abstract

The carrier-based aircraft is faced with severe working environment,so it is necessary to avoid the damage of personnel and equipment by high-temperature wake flow, but also to reduce the intake port of high-temperature gas to prevent the engine thrust reduction and surge. In this paper, the accuracy of the numerical simulation analysis is verified by the test data at first. Then, the flow mechanism and temperature field characteristics of a certain type of carrier-based aircraft with twin engine jet impinging on the deflector are analyzed; the dynamic flow characteristics of high temperature gas inhaled by the inlet and total temperature rise rate are also obtained. Finally, the risk of high temperature gas inhaled by the inlet is evaluated under asymmetrical engine flows, different wind flows, and different distances from the nozzle tail to the jet blast deflector. It is concluded that the distance from the nozzle tail to the jet blast deflector plays a decisive role in the overall strength and distribution of the backflow field, and that the position of the inlet affects the coupling characteristics of the suction and backflow field.

Cite this article

WANG Xiao , CHENG Jianhui , SHEN Tianrong , XU Baocheng , MENG Xuan . Numerical simulation research of influence of wake flow field on inlet temperature field of carrier-based aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021 , 42(8) : 525795 -525795 . DOI: 10.7527/S1000-6893.2021.25795

References

[1] WORDEN T J, SHIH C, ALVI F S. Supersonic jet impingement on a model-scale jet blast deflector[J]. AIAA Journal, 2017, 55(8):2522-2536.
[2] JAISWAL A, DHOBLE A S, TIDKE D J. High compressible flow through jet blast deflector[C]//Proceedings of ASME 2017 Gas Turbine India Conference. New York:ASME, 2018.
[3] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[4] LIU J H, CORRIGAN A, KAILASANATH K, et al. Impact of deck and jet blast deflector on the flow and acoustic properties of an imperfectly expanded supersonic jet[J]. Naval Engineers Journal, 2015, 127(3):47-60.
[5] ERWIN J, SINHA N, RODEBAUGH G. Noise predictions of a hot twin-jet impinging on a jet blast deflector AIAA-2013-0324[R]. Reston:AIAA, 2013.
[6] TIWARI V, SIMLANDI S, SARKAR S. Turbulent flow and heat transfer characteristics of non-Newtonian impinging jets on a flat plate[J]. Journal of the Institution of Engineers (India):Series C, 2021, 2021:1-14.
[7] MCLAUGHLIN D, KNO C W, PAPAMOSCHOU D. Experiments on the effect of ground reflections on supersonic jet noise:AIAA-2008-0022[R]. Reston:AIAA, 2008.
[8] BROWN C A. Jet-surface interaction test:Far-field noise results[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(7):071201.
[9] SMITH M J, MILLER S A. The effects of surfaces on the aerodynamics and acoustics of jet flows:AIAA-2013-2041[R]. Reston:AIAA, 2013.
[10] BROWN C A, WERNET M P. Jet-surface interaction test:flow measurement results:AIAA-2014-3198[R]. Reston:AIAA, 2014.
[11] HO C M, NOSSEIR N S. Dynamics of an impinging jet. Part 1. The feedback phenomenon[J]. Journal of Fluid Mechanics, 1981, 105:119.
[12] CRAFTON J, CARTER C, SULLIVAN J, et al. Pressure measurements on the impingement surface of sonic and sub-sonic jets impinging onto a flat plate at inclined angles[J]. Experiments in Fluids, 2006, 40(5):697-707.
[13] KUMAR R, LAZIC S, ALVI F S. Control of high-temperature supersonic impinging jets using microjets[J]. AIAA Journal, 2009, 47(12):2800-2811.
[14] WORDEN T, GUSTAVSSON J, SHIH C, et al. Acoustic measurements of high-temperature supersonic impinging jets in multiple configurations:AIAA-2013-2187[R]. Reston:AIAA, 2013.
[15] 马彩东, 王如根, 孙彬彬. 不同偏转角对偏流板周围流场的影响[J]. 弹箭与制导学报, 2012, 32(2):147-150. MA C D, WANG R G, SUN B B. The effect of different deflection angle on flow field around jet blast deflector[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(2):147-150(in Chinese).
[16] 何庆林, 卢晶, 杨大鹏. 舰载飞机发动机尾流场数值模拟[J]. 中国舰船研究, 2013, 8(5):13-18, 51. HE Q L, LU J, YANG D P. Numerical simulation of the flowfield of carrier-based aircraft exhaust jet[J]. Chinese Journal of Ship Research, 2013, 8(5):13-18, 51(in Chinese).
[17] 赵留平. 舰载机发动机喷管高温高压流动特性仿真分析[J]. 舰船科学技术, 2016, 38(1):145-149. ZHAO L P. Numerical simulation for high temperature and high pressure flow field of aircraft engine jet impingement[J]. Ship Science and Technology, 2016, 38(1):145-149(in Chinese).
[18] 郭凯, 王强. 带折角偏流板对超音速尾喷流的影响[J]. 中国舰船研究, 2018, 13(S1):50-56. GUO K, WANG Q. Influence of jet blast deflector with fold angle on supersonic jet flow[J]. Chinese Journal of Ship Research, 2018, 13(S1):50-56(in Chinese).
[19] 张群峰, 闫盼盼, 高为民, 等. 偏流板回流对舰载机进气道温升影响分析[J]. 航空计算技术, 2016, 46(4):35-38, 43. ZHANG Q F, YAN P P, GAO W M, et al. Influence of jet blast deflector backflow on inlet temperature[J]. Aeronautical Computing Technique, 2016, 46(4):35-38, 43(in Chinese).
[20] GAO F D, WANG D X, WANG H D, et al. Numerical analysis and verification of the gas jet from aircraft engines impacting a jet blast deflector[J]. Chinese Journal of Mechanical Engineering, 2018, 31:86.
[21] ALVI F, IYER K. Mean and unsteady flowfield properties of supersonic impinging jets with lift plates:AIAA-1999-1829[R]. Reston:AIAA, 1999.
Outlines

/